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Deterministic and Nondeterministic Finite Automata
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Deterministic and Nondeterministic Finite Au-
tomata

Last Time

Sets Theory (Review?)

Logic, Proofs (Review?)

Words, and operations on them: w1 ◦ w2, w
i, w∗, w+

Languages, and operations on them: L1 ◦ L2, L
i, L∗, L+

Today

Deterministic Finite Automata (DFAs) and their languages

Closure properties of DFA languages (the product construction)

Nondeterministic Finite Automata (NFAs) and their languages

Relating DFAs and NFAs (the subset construction)
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Fibonacci as a Recursively Defined Set

The nth Fibonacci number f(n):

f(0) = 0

f(1) = 1

f(n) = f(n − 1) + f(n − 2), for n ≥ 2

As a recursively defined set (relation)

F0 = ∅

Fi+1 = {〈0, 0〉, 〈1, 1〉}

∪















〈n, fn1
+ fn2

〉

∣

∣

∣

∣

∣

〈n1, fn1
〉 ∈ Fi and

〈n2, fn2
〉 ∈ Fi and

n = n1 + 1 = n2 + 2














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Fibonacci as a Recursively Defined Set

F0 = ∅

Fi+1 = {〈0, 0〉, 〈1, 1〉}

∪















〈n, fn1
+ fn2

〉

∣

∣

∣

∣

∣

〈n1, fn1
〉 ∈ Fi and

〈n2, fn2
〉 ∈ Fi and

n = n1 + 1 = n2 + 2















For example:

F0 = ∅

F1 = {〈0, 0〉, 〈1, 1〉}

F2 = {〈0, 0〉, 〈1, 1〉, 〈2, 1〉}

F3 = {〈0, 0〉, 〈1, 1〉, 〈2, 1〉, 〈3, 2〉}

F4 = {〈0, 0〉, 〈1, 1〉, 〈2, 1〉, 〈3, 2〉, 〈4, 3〉}

F5 =
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Conventions

Σ is an arbitrary alphabet. (In examples, Σ should be clear from
context.)

The variables a–e range over letters in Σ.

The variables u–z range over words over Σ∗.

The variables p–q range over states in Q.
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Recall

For any string w and language L:

w ◦ ε = w = ε ◦ w (1)

L ◦ {ε} = L = {ε} ◦ L (2)

L∗ = {ε} ∪ L ◦ L∗ (3)

L∗ is closed with respect to concatenation, for any L:

if u ∈ L∗ and v ∈ L∗ then u ◦ v ∈ L∗
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Finite Automata

... are “machines” for recognizing languages!

They process input words a symbol at a time.

An “accept light” flashes if the symbols read in so far are “OK”.

0 1 1 0 ···

Accept
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Formal Definition of Finite Automata

b

ab

a
a

b

a,b1

2 3

000 1

2 3

Definition A finite automaton (DFA) is a quintuple 〈Q, Σ, q0, δ, A〉

where:

Q is a finite non-empty set of states;

Σ is an alphabet;

q0 ∈ Q is the start state;

δ : Q × Σ → Q is the transition function; and

A ⊆ Q is the set of accepting (final) states.
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DFA Acceptance

Given a DFA M = 〈Q, Σ, q0, δ, A〉 and word w ∈ Σ∗:

M should accept w if in processing w a symbol at a time, M goes
to an accepting state.

To formalize this we define a function

δ∗ : Q × Σ∗ → Q

δ∗(q, w) should be the state reached from q after processing w.

How to define δ∗?
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Example of δ∗

b

ab

a
a

b

a,b1

2 3

000 1

2 3

δ∗(0, aab) = δ∗(δ(0, a), ab) = δ∗(2, ab)

= δ∗(δ(2, a), b) = δ∗(3, b)

= δ∗(δ(3, b), ε) = δ∗(1, ε)

= 1

What is δ∗(0, abaa)?
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Definition of δ∗

Definition Let M = 〈Q, Σ, q0, δ, A〉 be a DFA. Then δ∗ : Q × Σ∗ → Q is
defined recursively:

δ∗(q, w) =







q if w = ε

δ∗(δ(q, a), w′) if w = aw′ and a ∈ Σ

δ∗(q, w) = q′ if q′ the state reached by processing w, starting from q.
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Language of a Finite Automaton

A DFA accepts a word if it reaches an accepting state after
“consuming” the word.

Definition Let M = 〈Q, Σ, q0, δ, A〉 be a DFA.

M accepts w ∈ Σ∗ if δ∗(q0, w) ∈ A.

L(M) = {w ∈ Σ∗ | M accepts w } is the language accepted by M .
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Example: DFA for {w ∈ {0, 1}∗ | w ends in 01 }

3

0

2

00

0

1

1

0

1

C

A

B
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Example: DFA for Valid Binary Numbers

Must contain at least one digit.

No leading 0s.
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DFA Languages

Definition A language L ⊆ Σ∗ is a DFA language if there exists a
DFA M such that L = L(M).

Is the set of Java numeric constants a DFA language?

0xE, 15, 017, 15l, 15L, 15.0, 1.5e1, 1.5E1

Yes! To show it build a DFA.

Is the set of strings of balanced parentheses a DFA language?

ε, ab, aabb, aaabbb,

No! To show it . . . attend lecture 4.
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Closure Properties for DFA Languages

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 2 – p.16/38



Closed Sets

Let f be a unary operation f : U → U . A subset S ⊆ U is closed under
f — equivalently, f preserves S — if

∀s ∈ S. f(s) ∈ S

Let g be a binary operation g : U × U → U . A subset S ⊆ U is closed
under g — equivalently, g preserves S — if

∀〈s1, s2〉 ∈ S × S. f(s1, s2) ∈ S

Naturals are closed under addition, not subtraction.

Integers are closed under multiplication, not division.

Rationals are closed under division, not square root.

Reals are closed under square root, not exponentiation.

Complex are closed under exponentiation.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 2 – p.17/38

Closure Properties for DFA Languages

We would like to see what operations on languages “preserve” the
property of being recognizable by a DFA.

For example, suppose we wish to show the following:

Let L1 and L2 be DFA languages. Then L1 and L1 ∩ L2 are
also DFA languages.

How do we prove this? Via constructions.
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Complementation

Theorem Let L ⊆ Σ∗ be a DFA language. Then so is L.

Since L is a DFA language we know there is a DFA M accepting it.
How can we build a DFA for L?

Idea Reverse the accepting and nonaccepting states in M !

The proof formalizes this idea.
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Proof

Suppose L is a DFA language. By definition, there must be a DFA
M such that L(M) = L

Fix M = 〈Q, Σ, q0, δ, A〉.

Let M = 〈Q, Σ, q0, δ, Q − A〉. We show that L(M) = L.

For any w ∈ Σ∗,

δ∗(q0, w) 6∈ A iff δ∗(q0, w) ∈ Q − A

This holds trivially by induction on length of w.

Thus, for any w, w ∈ L(M) if and only if w 6∈ L(M).

Thus, L(M) = L. QED
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Example of Complementation Construction

b

ab

a
a

b

a,b1

2 3

00

M M ′

b

ab

a
a

b

a,b1

2 3

000 1

2 3

0 1

2 3
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Intersection

Theorem Let L1, L2 ⊆ Σ∗ be DFA languages. Then L1 ∩ L2 is a
DFA language.

To prove this we will use the Product Construction.

Given two DFAs M and N , the product construction builds a new
DFA Π(M, N) that “runs” M and N in parallel.

Π(M, N) then accepts a word iff both M and N do.

So L(Π(M, N)) = L(M) ∩ L(N)!

How do we define Π?
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The Product Construction

Let M = 〈QM , Σ, qM , δM , AM 〉 be a DFA.
Let N = 〈QN , Σ, qN , δN , AN 〉 be a DFA.
Define Π(M, N) as

Π(M, N) = 〈QM × QN , Σ , 〈qM , qN 〉 , δMN , AM × AN 〉

where

δMN (〈q1, q2〉, a) = 〈δM (q1, a), δN(q2, a)〉

Lemma For any w ∈ Σ∗, q1 ∈ QM , and q2 ∈ QN ,

δ∗MN (〈q1, q2〉, w) = 〈δ∗M (q1, w), δ∗N(q2, w)〉.

Proof?
And how does this help show that L(Π(M, N)) = L(M) ∩ L(N)?
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Example of Product Construction
A B C

b a

a,ba b

1

2

a

b

b

a

N

A,1 B,1 C,1

A,2 B,2 C,2

a

b

a

b

a

ba

b

a

Π(M,N)

b

a

b

M
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A Corollary about Closure for DFA Languages

What’s a “corollary”? An “obvious consequence”.

Corollary Let L1, L2 ⊆ Σ∗ be DFA languages. Then so are L1 ∪ L2

and L1 − L2.

Why is this an “obvious consequence” of what we have seen before?
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Nondeterministic Finite Automata
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Nondeterministic Finite Automata

Regular DFAs require exactly one transition per state for each
input symbol.

Nondeterministic FAs allow any number of transitions!

ab

a2 3

00

a

0

1 2

Why study NFAs? Because they are easier to work with sometimes....
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NFAs Can Be Smaller Than DFAs!

Consider language L ⊆ {0, 1}∗ given by regular expression
(0 + 1)∗0(0 + 1)(0 + 1) (3rd symbol from right is a 0).

0,1

0,1

0

0,1

0 1

00 01 10 11

000 001 010 011 100 101 110 111

ε

0

i i

iii

1

0

0 0 0 0i

0

1 0

1 0

1

0
1

1
01

0
1

0

1

0

1

NFA FA
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Formal Definition of NFAs

Definition A nondeterministic finite automaton (NFA) is a quintuple
〈Q, Σ, q0, δ, A〉 where:

Q is a finite set of states;

Σ is the input alpabet;

q0 ∈ Q is the start state;

A ⊆ Q is the set of accepting states; and

δ : Q × Σ → 2Q is the transition function.

Idea δ(q, a) records the set of states reachable from q via an
a-transition.
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Languages of NFAs: Defining δ∗

To formalize acceptance we first define a function δ∗ : Q × Σ∗ → 2Q;
δ∗(q, w) contains all the states reachable from q after processing w.

Definition Let M = 〈Q, Σ, q0, δ, A〉 be a NFA. Then δ∗ : Q× Σ∗ → 2Q

is defined as follows.

δ∗(q, w) =







{q} if w = ε
⋃

q′∈δ(q,a) δ∗(q′, w′) if w = aw′ and a ∈ Σ

Note that δ∗(q, w) gives us the set of all possible outcomes of
processing w from state q.
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Example

00

2

1 3a, b

a a

b

b a

0

3

2

δ∗(0, abb) =
⋃

q′∈δ(0,a)

δ∗(q′, bb) =
⋃

q′∈{1,2}

δ∗(q′, bb)

= δ∗(1, bb) ∪ δ∗(2, bb)

=
⋃

q′∈δ(1,b)

δ∗(q′, b) ∪
⋃

q′∈δ(2,b)

δ∗(q′, b)

= δ∗(1, b) ∪ δ∗(3, b) ∪ δ∗(1, b)

= δ∗(1, ε) ∪ δ∗(3, ε) ∪ ∅

= {1} ∪ {3} = {1, 3}
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Languages of NFAs

As with DFAs, the language of a NFA consists of the words that it
accepts.

In a NFA nondeterministic choices require “guessing”: which
transition should be taken? Some paths may lead to accepting
states, whereas others do not.

A NFA accepts a word if it is possible to make the guesses so that
we reach an accepting state.

This is called angelic nondetermism. We have access to an oracle
that always guesses correctly.
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Languages of NFAs: Formal Definition

Definition Let M = 〈Q, Σ, q0, δ, A〉 be a NFA, and let w ∈ Σ∗.

M accepts w if δ∗(q0, w) ∩ A 6= ∅.

The language, L(M), of M is defined by:
L(M) = {w ∈ Σ∗ | M accepts w }

So M accepts w if it is possible to reach an accepting state after
processing w.
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So What Is Relationship Between DFAs and NFAs?

Theorem

1. For any DFA M there is a NFA N such that L(N) = L(M).

2. For any NFA N there is a DFA M such that L(M) = L(N).

Proof of 1 is easy, since any DFA “is” a NFA. But 2?

Idea behind proof is to define DFA that “tracks” behavior of NFA on
a given input word.

This construction is often called the subset construction because
states in the DFA correspond to set of states in the NFA.
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The Subset Construction: Intuition

2 3

00

aa a

0

1 2
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The Subset Construction

Let N = 〈Q, Σ, q0, δ, A〉 be a NFA.
We want to construct a DFA D(N) accepting the same language.
States in D(N) will be sets of states from N .
Let P range over states of D(N).
P ∈ 2Q, that is, P ⊆ Q.

D(N) = 〈2Q , Σ , {q0} , δDN , ADN 〉

where

δDN (P, a) =
⋃

q∈P

δ(q, a)

ADN = {P | P ∈ 2Q and P ∩ A 6= ∅ }

Note that δ∗(q0, w) ∈ Q, whereas δ∗DN ({q0}, w) ⊆ Q.
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Example of Subset Construction

{0}

{1,2} {2}

{ }

a

b

b

a
a

b

a,b

D(N)

ab

a2 3

00

a

N

0

1 2

Note. Only reachable states in D(N) are represented. (In practice, not all subsets of

Q are reachable from {q0}, and these need not be added explicitly to D(N).)
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Correctness of Subset Construction

Let N = 〈Q, Σ, q0, δ, A〉 be a NFA.

D(N) = 〈2Q , Σ , {q0} , δDN , ADN 〉 where — for P ∈ 2Q —
δDN (P, a) =

⋃

q∈P δ(q, a) and ADN = {P | P ∩ A 6= ∅ }.

Theorem For any NFA N , L(N) = L(D(N)).

Recall that δ∗(q0, w) ∈ Q, whereas δ∗DN({q0}, w) ⊆ Q.

The proof relies on the following observations. For any w ∈ Σ∗:

δ∗(q0, w) = δ∗DN ({q0}, w)

δ∗(q0, w) ∩ A 6= ∅ if and only if δ∗DN({q0}, w) ∈ ADN

Consequently, w ∈ L(N) if and only if w ∈ L(D(N))!
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