Automata Theory and Formal Grammars: Lecture 3

Regular Expressions and Languages
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Last Time

® Deterministic Finite Automata (DFAs) and their Languages
® Closure Properties of DFA Languages (the product construction)
® Nondeterministic Finite Automata (NFAs) and their Languages

® Relating DFAs and NFAs (the subset construction)

Today

® Regular Expressions and Regular Languages
® Properties of Regular Languages

® Relating NFAs and regular expressions: Kleene’s Theorem
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NFAs: Finishing Up
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Sipser uses a more general definition than | gave last week:

Definition| A nondeterministic finite automaton with empty
transitions (NFAeg) is a quintuple (@, X, qo, 9, A) where:

B () is a finite set of states;

® Y is the input alpabet;

B gy € QIs the start state;

B A C Q is the set of accepting states; and

B Q x YU{e} — 29 is the transition function.
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Theorem | The set of NFA languages is identical to the set of NFAe
languages.

Proof?

One direction is trivial: An NFA (without empty transitions) is an NFAe

where for all ¢:
5(Q7 5) = ()
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Let N = (Q, >, qo, 9, A) be a NFAc.

We want to construct a DFA D(/NV) accepting the same language.
States in D(V) will be sets of states from .

Let P range over states of D(N).

P € 29, thatis, P C Q.

D(N) = (2°,%, 6(g0,€), dpn , ADN)
where

OpN(P,a) = U5* q,a

qeP
ADN:{P‘PEQQandPﬂA#@}
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Consider the NFA M given by K = {q0,q1,92}, ¥ = {0,1,2}, s = qo,
F = {g2} with transition relation A given below:

q o A(g,0)
q0 0 do
q0 € q1
q1 1 41
q1 42
q2 2 q2

L(M) = {0} {1}7{2}".

Portions (©)2000 Rance Cleaveland (¢)2004 James Riely

Automata Theory and Formal Grammars: Lecture 3 — p.7/45



The reSUlting DFA M/ haS K/ — {{QO7q17 QQ}7 {q17 QQ}a {q2}7 (Z)}s
s ={q0,q1, 92}, F = {{q0, 01, @2}, {q1, 92}, {q2} } and 0"

g o 0" (a,0)

{ g0, 01,92 } 0 { qo0,q1,92 }
{qo0, 01,92 } 1 {q1,q2}
{qo0, 01,42} 2 {2}
{q1,q2 } 0 0

{q1,q2 } 1 {q1,q2 }
{q1,q2 } 2 { g}

{ g2} 0,1 0

{ g2} 2 { g2}

0 0,1,2 0
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Let ¥ ={a4,...,a,} Where n > 2.
Let L = {w | Ji. a; does not appear in w }.
For example, If ¥ = {a1, a2, a3} then aia1as € X but a1asa3 ¢ 3.
Intuitively, the NFA would work in the following manner:
® Guess the symbol a; that is missing from the input.
® |f no symbol is missing, move to a dead state.
® |f a symbol a; is missing, go to state g;.
® |f in state ¢; you ever encounter a;, move to a dead state.

® Otherwise eat the remaining symbols and accepit.

Portions (€)2000 Rance Cleaveland (¢)2004 James Riely Automata Theory and Formal Grammars: Lecture 3 — p.9/45



For the construction of the NFA we need one starting state ¢y and one

state for each symbol in the alphabet, ¢4, ..., ¢..
There are e-transitions from ¢, into each of ¢4, ..., g5, and self-loops
on each of ¢4, ..., g, labeled with the states that are legal.

What happens when we use the construction to produce a DFA
accepting this language?

The equivalent DFA M’ has initial state s’ = {qo, 91,92, q3, ---, qn }.
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Regular Languages
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This course: a study of the computing power needed to “process”
different kinds of languages.

The first class of languages we will study: regular languages.

Regular languages are defined using regular expressions.
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... a notation for defining languages.

Definition | Let X be an alphabet. Then the set R(3%) of regular
expressions over Y is defined recursively as follows.

0 e R(Z)
e € R(X)
a €€ R(X) ifaeX
r+seR(X) ifreR(X)and s € R(X)
ros e R(X) ifr e R(X) and s € R(Y)
rx € R(X) ifr € R(X%)
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The previous definition just gives the syntax of regular expressions:
o, U, x are symbols that we will shortly give an interpretation to.

Examples| Let > = {a,b}. The following are regular expressions in
R(X%).

Notation

Usually, o will be omitted.

Also, to reduce parentheses, we will adopt the following precedence:
* >0 > U.

So (((b*) o ((aoa)+ b)) o) can be written as b«(aa + b)().
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We will sometimes use the following derived operations on regular
expressions.

.
. € ifi=20
= . _

ro(r'=') otherwise
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To make connection with languages precise, we need to define a
semantics for regular expressions saying what they “mean”.

= Semantics will be given in form of function £ : R(X) — 2%

® For any regular expression r, L£(r) C X* will be the language
defined by r.

Portions (€)2000 Rance Cleaveland (¢)2004 James Riely Automata Theory and Formal Grammars: Lecture 3 — p.16/45



Definition | Fix alphabet ¥. Then £ : R(X) — 2% is defined as
follows.

) ifr=10
{e} ifr=¢
{a} ifr=acanda € X

L(r) = .

Definition| L C ¥* is a regular language if there is a regular
expression r such that L = L(r).

(Note: This is a denotational semantics.)
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