Minimal Deterministic Automata
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= Regular Expressions and Regular Languages

= Properties of Regular Languages

® Relating NFAs and regular expressions: Kleene’s Theorem
® Decision procedures for FAs

® Distinguishing Strings with respect to a Language

® Minimum-state DFAs for Regular Languages

B Minimizing DFAs using Partition Refinement
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A decision procedure is an algorithm for answering a yes/no question.

A number of yes/no questions involving FAs have decision procedures.
B Given FA M and x € ¥*,isx € L(M)?
B Given FA M, is L(M) = 0?
B Given FAs M; and Mo, is L(M;) C L(M)?

Answering the first is easy ... but what about the other two?
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Deciding Whether L(M) =( Deciding Whether L(M;) C L(M,)

For any sets S; and S, we can reason as follows.
LM)=0) < VozeX'.zgL(M)

6( )gA 31§SQ <:>51—S2=@
— VaeX*.6(q,x _

0 — S5NS=0
The latter property can be checked using reachability analysis: do all

paths from the start state lead to nonaccepting states?
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Deciding Whether L(M;) C L(M;) (cont.)

So how can we decide whether or not £(M;) C L(M3)?
B Build a FA for £L(M;) — L(M3).
= Complement M, to get M. Minimizing Automata
m Apply the product construction to get II(My, M).

® Check whether or not L(TT(My, My)) = 0.
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Here are two DFAs recognizing the same language. B How many states does an DFA need to accept a given language?

B Can a DFA be “minimized” (i.e. can “unnecessary” states be
identified and removed)?

We now devote ourselves to answering these questions. All involve a
study of the notion of indistinguishability of strings.

The right automaton seems to have a redundant state!
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Let L C ©* be a langauge. Then the indistinguishability " Letl = {w e {0,1}" | wendsin 00}. Is:
relation for L, C $* x ¥, is defined as follows. ecp>al? Yes
. e 15011? Yes
rXyiffvVzeX . xz€ L < yzeL 04107 Yes
Intuitively, if © B y, then any common “extension” to z, y (the “z” in the °11x10? No; consider z =0
definition) either makes both zz and yz, or neither, elements of L. mLletL={0"1"|[n>0) Is:
ecpal? No; consider z = 01
® 7 539y means z, y are indistinguishable with respect to language L. ° 054 00? No; consider z = 1
(That is, L must be given in order for 5 to be well-defined.) e 01100117 Yes

m arelates arbitrary strings, not just elements in L.
mifzeLand y then y € L also (why?).

misittruethatz € L and y € L imply that z 51 y?
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Let M =(Q, %, qo, 9, A) be a DFA accepting L, and suppose z,y € ¥* Let M =(Q, X, g0, 9, A) be a DFA, and let z, y € ¥* be such

are such that §* (4o, ) = §*(40.). that 5" (go,2) = 5" (g0, ). Then & 5
\ Fix z,y € ¥*, and suppose that §*(qo, ) = 6*(go, ).

We must prove that = >k y, i.e.
forany z € ¥*, xz € L(M) iff yz € L(M). So fix z.
ol Iy By induction on z, one may establish that 6* (g0, zz) = §*(qo, y2).
“ “ Hence 0*(qo, zz) € A iff 6*(qo,yz) € A.

-~ - This implies that zz € L(M) iff yz € L(M).
o) =@y () =) #wa) =) o
The contrapositive of the lemma says thatif z 4y then

L£(M)

Then z > y! 5*(qo, ) # 6*(qo,y); in other words, if 2 4y then z and y must lead
to different states in any DFA accepting £(M).
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The previous lemma says that if 2 4 y then any DFA accepting L must Theorem | Let L ¢ X*. Then i is an equivalence relation on 3
i . . L .
have different states for z and y. Proof Outline | To prove this we need to show that < is:
. L . L
Question| Suppose z <1 y. Could an DFA for L equate the states to Reflexive: FOrany z € ©*, z i z.

which z, y lead to from the start state? _ e L L
Symmetric: For any z,y € ¥*, if z >y then y < z.

The answer turns out to be “yes”. To establish this, we will show how to
construct an automaton M7y, for L with the property that if = = y then
*(qo, ) = 6 (qo, ¥)-

Transitive: Forany x,y,z € ¥*, if x B yandy 5 2 then z 4 z.
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. L . . .
Since i is an equivalence relation over ¥*, every = € %* belongs to a
unique equivalence class.

o], ={y = |wxay}
Let L = {w € {0,1}* | wendsin 00 }.
u [8]|>L<1 ={y e {0,1}* | y doesnotendin 0 }
® What are the other equivalence classes of B<?
[O]DLq = {y€{0,1}" | y ends in exactly one 0 }

[OO]DLQ = {y€{0,1}" | y endsin at least two Os }

Note that every string in {0, 1}* falls into one of these three
equivalence classes!

In My, strings indistinguishable with respect to L should lead to the
same state.

Idea (for M)

. L
® |ntroduce a state for each equivalence class of .

m Define the transitions so that §*(qo, x) is [z]

Questions

B What should the start state be?
The state corresponding to [¢]

L -
>

L
>
® What should the accepting states be?

The states corresponding to [;r}DLq for each z € L.
B What should the a-transition of the state for [z], be?

The state corresponding to [za]

L
>

L -
>
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Let L C ¥*, and consider the automaton

Mp ={(Qr,%,qr,6r, Ar) given as follows.

Then £(M,) = L, and no automaton recognizing L can have fewer
states.

Let L = {w € {0,1}* | wendsin 00 }. Then M, looks like this.

1 [6]1L

1 0
T )
0

Portions (©)2000 Rance Cleaveland (€)2004 James Riely Automata Theory and Formal Grammars: Lecture 4 — p.19/46

Portions (©)2000 Rance Cleaveland (©)2004 James Riely Automata Theory and Formal Grammars: Lecture 4 — p.20/46



Is this an algorithm?

Constructive proofs need not be algorithmic.
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® What does “z > y” mean?

That 2 and y are indistinguishable with respect to language L; that
is,forany z € ¥* 2z € L < yz € L.

B Suppose x B yand y 54 2. What can we say about x and z, and

why?
z 54 2 because 5 is an equivalence relation on ¥* x ¥*,
N
B Suppose machine M and strings z,y € X* are Q
such that: | v
o

(M)

Why is z & y?
Because zz and yz will lead to the same state too, for any z € ¥*!
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® What is 67 (¢, x)?
One can show by induction that it is [x]DLq.

® When does M, accept x?
When M&q C L.

B Suppose ¢ (¢, x) = d3 (¢, y). What is the relationship between
x,y?
L
T Xy
B Suppose 67 (qr,, ) # 93 (qr, y). What is the relationship between
x,y?
L
TRy
The first two points guarantee that £(M ) = L; the last two ensure that
no DFA for L can have fewer states (why?)!
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N
B Suppose machine M and strings z,y € ¥* are “©

such that: x y
3 b
L(M)
Isz 4 y?

Not necessarily.

B Suppose that = ;é y and that M = (Q, X, qo, 9, A) accepts L. Can
5*((]0, ZE) = 5*((]07 y)?
No!

B What are the equivalence classes of 51 when
L = {w e {0,1}* | w has an even number of 1's }?

One is L itself; the other is { w € {0,1}* | w has an odd number of 1's }.
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® If L is regular, what are the states of the minimum-state DFA M,
for L?

The equivalence classes of =3

B Let L be regular, let M, =(Qr,>, qr,d1, Ar) be the
minimum-state DFA for L, and let = € ¥*. What is 65 (q1,, z)?
[I]D%' i.e. the equivalence class of L!

B | et L be regular, and let M}, be the minimum-state DFA M, for L.
What are the accepting states of M ?
The equivalence classes of elements of L.

Do nonregular languages exist?

Consider L = {0"1" |n > 0}.

® What would a “FA” look like for this language?

® What can you say about the strings 0° and 07 if i # j?
. L .
If i # j then 0% pé 071
In this case s has an infinite number of equivalence classes!

We will revisit this issue next lecture.
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What we know:

For any regular language L there is a minimum-state DFA M,

So any DFA for L must have at least as many states as M.

Suppose we have a DFA M for L. Is there a way to

minimize M, i.e. generate the mimimum-state DFA M, by eliminating
“unnecessary” states from M?

We'll see....
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Certainly, unreachable states in DFAs are unnecessary:

In what follows we will assume these states have already been
removed.
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In what follows, fix DFA M = (Q, %, qo, 3, A).

Let ¢ € Q. Then M, is the DFA (Q, %, ¢, 4, A).

M, is like M except that the start state has been changed to ¢ from ¢o:

What is £(M,)? The words leading from ¢ to an accepting state in !

Let q1.q2 € Q. Then g1 % go if L(M,,) = L(M,,).

® g, ~ g, holds if for all w € ©*, 6% (q1, w) € Aiff 6* (g2, w) € A.
So either §*(q1, w) € A and 6* (g2, w) € A:

%ui) w

© ©

or 6*(q1,w) € A and 6*(qq, w) & A:

= =

O O
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Let M = (Q, X, 0, qo, A) be a DFA, and let ¢1, g2 € @ be states.
Intuitively, ¢; ~ g» holds if the states “accept” the same strings.

Consider the following M.

A~ B: every string leading from A to accept-
ing state also leads from B to accepting
state, and vice versa.

A C: string 0 leads from A to rejecting state
but from C' to accepting state.
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What happens if 6*(qo, 2) ~ 6* (g0, y)?

B This means for all z € ¥*,6*(qo, z2) € A iff 6*(qo,yz) € A, i.e.:

~ ~
() (@)

‘ 0*(qo, ) ‘ 9*(q0,y)
© ©

B In other words, zz € L(M) iff yz € L(M)!

Now suppose that x = Y.

B This means that for all z € £*, 2z € L(M) iff yz € L(M).

® In other words:  (g)

‘ *(¢o, 7) 5" (q0,)
z z

© ©

Let M =(Q, %, qo, 9, A) be a DFA, and let =,y € ¥*. Then
5* (g0, ) X 6*(qo, y) if and only if = &4 .
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® Letz,y € X*. Then 6*(qo, ) ~ 6*(qo, y) iff z = Y.

he

z y = zlany
Se
® X is an equivalence relation and thus has equivalence classes.

® If g, X g then 6(q1,a) ~ §(qa,a) forany a € 3.

@ ~\ @ - a a

~M

® |n contrast with L[élg), Xis an equivalence relation over a finite set
(Q) rather than an infinite one (X*).

The previous facts suggest a means for minimizing DFAs.
n M

m “Collapse” ~ states into a single state

= “Merge” transitions.

~ equivalence classes: {4, B}, {C}

® Minimized M
M
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We just established this:

Let M = (Q, %, qo, 0, A) be a DFA, and suppose that

q1 ~ qo. Thenforany a € %, 6(q1,a) ~ §(qa, a).

We can now “merge” redundant states as follows!

Let M = (Q, X, qo, 9, A) be a DFA. Then the automaton

My =(Qr,>,qr,d1, Ar) given below is a mimimum-state DFA
accepting L(M).

Qr=A{ldulacQ}
ar = [qo]a

5(lalar, a) = [0(g, a)ly
Ap={ldulac A}
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In order to minimize DFAs mechanically, we need to be able to
compute the equivalence classes of ~ for a given DFA M.

This can be done using a partition refinement algorithm.

® We initially make crude assumptions about which states are
related by ~. (l.e. we assume a small number of large equivalence
classes.)

B Based on an analysis of outgoing transitions, we may split some
equivalence classes when they are found to contain states not
related by ~.

® When we can’t split any more, we're done.

List of equivalence classes: partition.
Splitting equivalence classes: refinement.
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Where do we start our partition-refinement algorithm? In other words,
which states are guaranteed not to be ~ related?

If g € Aand g3 ¢ Athen ¢y ’%QQ.
Because ¢ € L(M,,) and ¢ & L(M,,)!

So the partition refinement algorithm starts off with an initial partition
containing two equivalence classes: A and @ — A.
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Initial partition: {6}, {1,2,3,4,5,7}
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M i .
Suppose q1, g2 are such that §(qy, a) % 6(¢q2, a) for some a € X. More precisely, suppose we have: B
QO - @ @ O
a a a a a
Y 1 %

Then g1 7 go! (Why?)

This means that if we have an equivalence class (or block) B such that Thatis, 1,92 € B and het é(q1,a) € B’ but 6(¢g2,a) ¢ B'. Then B

. should be split into:
® ¢, ¢, arein B, but

. o B = € B|6(q,a) € B
H there is an a such that 6(q1, a) and (g2, a) are in different blocks, ! {a | 9(a,a) }
/
. . By = {q€B|d(q,a)¢ B}
then B should be split into two new classes: one containing ¢;, and
one containing ¢!
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Initial partition: {6}, {1,2,3,4,5,7} = Start with partition {4, Q — A}.

In B ={1,2,3,4,5,7} ® While there is a block B that should be split, generate a new

B 3,5,7 have 0 transitions to partition by replacing B with B; and Bs.
B’ = {6}.

E 1,2 4 do not.

® Halt when no more splitting is possible.

It turns out that when the algorithm terminates, the blocks are exactly

So B should be split into: the equivalence classes of ~!

® B; ={3,5,7}, and
B By ={1,2,4}.
New partition: {6},{3,5,7},{1,2,4}.

These can then be used to generated the minimized version M, of M.
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® are defined using regular expressions
® are processed mechanically via DFAs/NFAs
B are closed with respect to o, *, U, complement, N, ...

B have a characterization in terms of equivalence classes of
“indistinguishability”

B have minimum-state DFA acceptors
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