
Automata Theory and Formal Grammars: Lecture 4

Minimal Deterministic Automata

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.1/46

Minimal Deterministic Automata

Last Time:

Regular Expressions and Regular Languages

Properties of Regular Languages

Relating NFAs and regular expressions: Kleene’s Theorem

Today:

Decision procedures for FAs

Distinguishing Strings with respect to a Language

Minimum-state DFAs for Regular Languages

Minimizing DFAs using Partition Refinement

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.2/46

Decision Procedures for FAs

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.3/46

Decision Procedures for FAs

A decision procedure is an algorithm for answering a yes/no question.

A number of yes/no questions involving FAs have decision procedures.

Given FA M and x ∈ Σ∗, is x ∈ L(M)?

Given FA M , is L(M) = ∅?

Given FAs M1 and M2, is L(M1) ⊆ L(M2)?

Answering the first is easy ... but what about the other two?

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.4/46

Deciding Whether L(M) = ∅

L(M) = ∅ ⇐⇒ ∀x ∈ Σ∗. x 6∈ L(M)

⇐⇒ ∀x ∈ Σ∗. δ∗(q0, x) 6∈ A

The latter property can be checked using reachability analysis: do all
paths from the start state lead to nonaccepting states?

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.5/46

Deciding Whether L(M1) ⊆ L(M2)

For any sets S1 and S2 we can reason as follows.

S1 ⊆ S2 ⇐⇒ S1 − S2 = ∅

⇐⇒ S1 ∩ S2 = ∅

S2

S′

2

S1

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.6/46

Deciding Whether L(M1) ⊆ L(M2) (cont.)

So how can we decide whether or not L(M1) ⊆ L(M2)?

Build a FA for L(M1) − L(M2).

Complement M2 to get M2.

Apply the product construction to get Π(M1, M2).

Check whether or not L(Π(M1, M2)) = ∅.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.7/46

Minimizing Automata

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.8/46

How Many States Do You Need in a DFA?

Here are two DFAs recognizing the same language.

b

b b

b

b

a a

a

a

a

The right automaton seems to have a redundant state!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.9/46

Questions about States in DFAs

How many states does an DFA need to accept a given language?

Can a DFA be “minimized” (i.e. can “unnecessary” states be
identified and removed)?

We now devote ourselves to answering these questions. All involve a
study of the notion of indistinguishability of strings.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.10/46

Indistinguishability

Definition Let L ⊆ Σ∗ be a langauge. Then the indistinguishability

relation for L,
L

⊲⊳⊆ Σ∗ × Σ∗, is defined as follows.

x
L

⊲⊳ y iff ∀z ∈ Σ∗. xz ∈ L ⇐⇒ yz ∈ L

Intuitively, if x
L

⊲⊳ y, then any common “extension” to x, y (the “z” in the
definition) either makes both xz and yz, or neither, elements of L.

Notes

x
L

⊲⊳ y means x, y are indistinguishable with respect to language L.

(That is, L must be given in order for
L

⊲⊳ to be well-defined.)
L

⊲⊳ relates arbitrary strings, not just elements in L.

If x ∈ L and x
L

⊲⊳ y then y ∈ L also (why?).

Is it true that x ∈ L and y ∈ L imply that x
L

⊲⊳ y?

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.11/46

Examples of Indistinguishability

Let L = {w ∈ {0, 1}∗ | w ends in 00 }. Is:

• ε
L

⊲⊳ 1? Yes

• 1
L

⊲⊳ 011? Yes

• 0
L

⊲⊳ 10? Yes

• 1
L

⊲⊳ 0? No; consider z = 0

Let L = { 0n1n | n ≥ 0 }. Is:

• ε
L

⊲⊳ 1? No; consider z = 01

• 0
L

⊲⊳ 00? No; consider z = 1

• 01
L

⊲⊳ 0011? Yes

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.12/46

Relating
L

⊲⊳ and DFAs for L

Let M = 〈Q, Σ, q0, δ, A〉 be a DFA accepting L, and suppose x, y ∈ Σ∗

are such that δ∗(q0, x) = δ∗(q0, y).

q0

x y

δ∗(q0, x) = δ∗(q0, y)
z

δ∗(q0, xz) = δ∗(q0, yz)

Then x
L

⊲⊳ y!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.13/46

Formally...

Lemma Let M = 〈Q, Σ, q0, δ, A〉 be a DFA, and let x, y ∈ Σ∗ be such

that δ∗(q0, x) = δ∗(q0, y). Then x
L(M)

⊲⊳ y.

Proof Fix x, y ∈ Σ∗, and suppose that δ∗(q0, x) = δ∗(q0, y).

We must prove that x
L(M)

⊲⊳ y, i.e.
for any z ∈ Σ∗, xz ∈ L(M) iff yz ∈ L(M). So fix z.
By induction on z, one may establish that δ∗(q0, xz) = δ∗(q0, yz).
Hence δ∗(q0, xz) ∈ A iff δ∗(q0, yz) ∈ A.
This implies that xz ∈ L(M) iff yz ∈ L(M).

Note The contrapositive of the lemma says that if x
L(M)

6⊲⊳ y then

δ∗(q0, x) 6= δ∗(q0, y); in other words, if x
L(M)

6⊲⊳ y then x and y must lead
to different states in any DFA accepting L(M).

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.14/46

L

⊲⊳ and Minimum-state Automata

The previous lemma says that if x
L

6⊲⊳ y then any DFA accepting L must
have different states for x and y.

Question Suppose x
L

⊲⊳ y. Could an DFA for L equate the states to
which x, y lead to from the start state?

The answer turns out to be “yes”. To establish this, we will show how to

construct an automaton ML for L with the property that if x
L

⊲⊳ y then
δ∗(q0, x) = δ∗(q0, y).

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.15/46

A Fact About
L

⊲⊳

Theorem Let L ⊆ Σ∗. Then
L

⊲⊳ is an equivalence relation on Σ∗.

Proof Outline To prove this we need to show that
L

⊲⊳ is:

Reflexive: For any x ∈ Σ∗, x
L

⊲⊳ x.

Symmetric: For any x, y ∈ Σ∗, if x
L

⊲⊳ y then y
L

⊲⊳ x.

Transitive: For any x, y, z ∈ Σ∗, if x
L

⊲⊳ y and y
L

⊲⊳ z then x
L

⊲⊳ z.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.16/46

L

⊲⊳ and Equivalence Classes

Since
L

⊲⊳ is an equivalence relation over Σ∗, every x ∈ Σ∗ belongs to a
unique equivalence class.

[x]L

⊲⊳
= { y ∈ Σ∗ | x

L

⊲⊳ y }

Example Let L = {w ∈ {0, 1}∗ | w ends in 00 }.

[ε]L

⊲⊳
= { y ∈ {0, 1}∗ | y does not end in 0 }

What are the other equivalence classes of
L

⊲⊳?

[0]L

⊲⊳
= { y ∈ {0, 1}∗ | y ends in exactly one 0 }

[00]L

⊲⊳
= { y ∈ {0, 1}∗ | y ends in at least two 0s }

Note that every string in {0, 1}∗ falls into one of these three
equivalence classes!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.17/46

Building ML

In ML strings indistinguishable with respect to L should lead to the
same state.

Idea (for ML)

Introduce a state for each equivalence class of
L

⊲⊳.

Define the transitions so that δ∗(q0, x) is [x]L

⊲⊳
.

Questions

What should the start state be?
The state corresponding to [ε]L

⊲⊳

What should the accepting states be?
The states corresponding to [x]L

⊲⊳
for each x ∈ L.

What should the a-transition of the state for [x]L

⊲⊳
be?

The state corresponding to [xa]L

⊲⊳
.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.18/46

Formalizing the Construction of ML

Theorem Let L ⊆ Σ∗, and consider the automaton
ML = 〈QL, Σ, qL, δL, AL〉 given as follows.

QL = { [w]L

⊲⊳
| w ∈ Σ∗ }

qL = [ε]L

⊲⊳

δL([w]L

⊲⊳
, a) = [wa]L

⊲⊳

AL = { [w]L

⊲⊳
| w ∈ L }

Then L(ML) = L, and no automaton recognizing L can have fewer
states.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.19/46

Example of ML

Let L = {w ∈ {0, 1}∗ | w ends in 00 }. Then ML looks like this.

[ε]IL

[0]IL

[00]IL

0

0

1

1

1

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.20/46

Hmmm...

Is this an algorithm?

Constructive proofs need not be algorithmic.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.21/46

Why is the Theorem True?

What is δ∗L(qL, x)?
One can show by induction that it is [x]L

⊲⊳
.

When does ML accept x?
When [x]L

⊲⊳
⊆ L.

Suppose δ∗L(qL, x) = δ∗L(qL, y). What is the relationship between
x, y?

x
L

⊲⊳ y

Suppose δ∗L(qL, x) 6= δ∗L(qL, y). What is the relationship between
x, y?

x
L

6⊲⊳ y

The first two points guarantee that L(ML) = L; the last two ensure that
no DFA for L can have fewer states (why?)!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.22/46

Reviewing
L

⊲⊳

What does “x
L

⊲⊳ y” mean?

That x and y are indistinguishable with respect to language L; that
is, for any z ∈ Σ∗, xz ∈ L ⇐⇒ yz ∈ L.

Suppose x
L

⊲⊳ y and y
L

⊲⊳ z. What can we say about x and z, and
why?

x
L

⊲⊳ z because
L

⊲⊳ is an equivalence relation on Σ∗ × Σ∗.

Suppose machine M and strings x, y ∈ Σ∗ are
such that: yx

Why is x
L(M)

⊲⊳ y?

Because xz and yz will lead to the same state too, for any z ∈ Σ∗!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.23/46

Reviewing
L

⊲⊳ (cont.)
Suppose machine M and strings x, y ∈ Σ∗ are
such that: x y

Is x
L(M)

6⊲⊳ y?

Not necessarily.

Suppose that x
L

6⊲⊳ y and that M = 〈Q, Σ, q0, δ, A〉 accepts L. Can
δ∗(q0, x) = δ∗(q0, y)?

No!

What are the equivalence classes of
L

⊲⊳ when
L = {w ∈ {0, 1}∗ | w has an even number of 1’s }?

One is L itself; the other is {w ∈ {0, 1}∗ | w has an odd number of 1’s }.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.24/46

A Minimum-State DFA for L

If L is regular, what are the states of the minimum-state DFA ML

for L?

The equivalence classes of
L

⊲⊳.

Let L be regular, let ML = 〈QL, Σ, qL, δL, AL〉 be the
minimum-state DFA for L, and let x ∈ Σ∗. What is δ∗L(qL, x)?

[x]L

⊲⊳
, i.e. the equivalence class of L!

Let L be regular, and let ML be the minimum-state DFA ML for L.
What are the accepting states of ML?

The equivalence classes of elements of L.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.25/46

Languages That Are Not Regular

Do nonregular languages exist?

Yes! Consider L = { 0n1n | n ≥ 0 }.

What would a “FA” look like for this language?

...0 0 0 0

...
1 1 1

1

0, 1

0 0 0
0, 1

1 1 1

What can you say about the strings 0i and 0j if i 6= j?

If i 6= j then 0i
L

6⊲⊳ 0j !

In this case
L

⊲⊳ has an infinite number of equivalence classes!

We will revisit this issue next lecture.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.26/46

Minimizing DFAs

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.27/46

Minimizing DFAs

What we know:

For any regular language L there is a minimum-state DFA ML

with L(ML) = L.

So any DFA for L must have at least as many states as ML.

Question Suppose we have a DFA M for L. Is there a way to
minimize M , i.e. generate the mimimum-state DFA ML by eliminating
“unnecessary” states from M?

We’ll see....

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.28/46

Unnecessary States in DFAs

Certainly, unreachable states in DFAs are unnecessary:

0

1

0, 1

0

1

A

B

C

In what follows we will assume these states have already been
removed.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.29/46

Other Unneccessary States: Preliminaries

In what follows, fix DFA M = 〈Q, Σ, q0, δ, A〉.

Definition Let q ∈ Q. Then Mq is the DFA 〈Q, Σ, q, δ, A〉.

Mq is like M except that the start state has been changed to q from q0:

0

1

0

q0

q0

1

1

Mq

0

1

0

q0

q0

1

1

M

What is L(Mq)? The words leading from q to an accepting state in M !

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.30/46

Language Equivalence and States

Definition Let q1, q2 ∈ Q. Then q1

M

∼ q2 if L(Mq1) = L(Mq2).

q1

M

∼ q2 holds if for all w ∈ Σ∗, δ∗(q1, w) ∈ A iff δ∗(q2, w) ∈ A.
So either δ∗(q1, w) ∈ A and δ∗(q2, w) ∈ A:

q1 q2

w w

or δ∗(q1, w) 6∈ A and δ∗(q2, w) 6∈ A:

w w
q1 q2

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.31/46

Example for M

∼

Let M = 〈Q, Σ, δ, q0, A〉 be a DFA, and let q1, q2 ∈ Q be states.
Intuitively, q1

M

∼ q2 holds if the states “accept” the same strings.

Example Consider the following M .

A

C

0, 1

B

0, 1 0, 1

A
M

∼ B: every string leading from A to accept-
ing state also leads from B to accepting
state, and vice versa.

A
M

6∼ C: string 0 leads from A to rejecting state
but from C to accepting state.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.32/46

Relating M

∼ and
L(M)

⊲⊳

What happens if δ∗(q0, x)
M

∼ δ∗(q0, y)?

This means for all z ∈ Σ∗, δ∗(q0, xz) ∈ A iff δ∗(q0, yz) ∈ A, i.e.:

q0 q0

x y

z z

iff

δ∗(q0, x) δ∗(q0, y)

In other words, xz ∈ L(M) iff yz ∈ L(M)!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.33/46

Relating M

∼ and
L(M)

⊲⊳ (cont.)

Now suppose that x
L(M)

⊲⊳ y.

This means that for all z ∈ Σ∗, xz ∈ L(M) iff yz ∈ L(M).

In other words: q0 q0

x y

z z

iff

δ∗(q0, x) δ∗(q0, y)

Lemma Let M = 〈Q, Σ, q0, δ, A〉 be a DFA, and let x, y ∈ Σ∗. Then

δ∗(q0, x)
M

∼ δ∗(q0, y) if and only if x
L(M)

⊲⊳ y.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.34/46

Facts about M

∼

Let x, y ∈ Σ∗. Then δ∗(q0, x)
M

∼ δ∗(q0, y) iff x
L(M)

⊲⊳ y.

x y

∼M

⇐⇒ x IL(M) y

M

∼ is an equivalence relation and thus has equivalence classes.

If q1

M

∼ q2 then δ(q1, a)
M

∼ δ(q2, a) for any a ∈ Σ.

=⇒q1 q2∼M aa

∼M

q1 q2

In contrast with
L(M)

⊲⊳ , M

∼ is an equivalence relation over a finite set
(Q) rather than an infinite one (Σ∗).

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.35/46

Constructing Minimum-State DFAs

The previous facts suggest a means for minimizing DFAs.

“Collapse” M

∼ states into a single state

“Merge” transitions.

Example

A

C

0, 1

B

0, 1 0, 1

M

M

∼ equivalence classes: {A, B}, {C}

{A,B}

0, 1 0, 1

{C}

Minimized M

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.36/46

Merging Language-Equivalent States

We just established this:

Lemma Let M = 〈Q, Σ, q0, δ, A〉 be a DFA, and suppose that

q1

M

∼ q2. Then for any a ∈ Σ, δ(q1, a)
M

∼ δ(q2, a).

We can now “merge” redundant states as follows!

Theorem Let M = 〈Q, Σ, q0, δ, A〉 be a DFA. Then the automaton
ML = 〈QL, Σ, qL, δL, AL〉 given below is a mimimum-state DFA
accepting L(M).

QL = { [q]M
∼

| q ∈ Q }

qL = [q0]M
∼

δ([q]M
∼

, a) = [δ(q, a)]M
∼

AL = { [q]M
∼

| q ∈ A }

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.37/46

Computing Equivalence Classes of M

∼

In order to minimize DFAs mechanically, we need to be able to
compute the equivalence classes of M

∼ for a given DFA M .

This can be done using a partition refinement algorithm.

We initially make crude assumptions about which states are
related by M

∼. (I.e. we assume a small number of large equivalence
classes.)

Based on an analysis of outgoing transitions, we may split some
equivalence classes when they are found to contain states not
related by M

∼.

When we can’t split any more, we’re done.

List of equivalence classes: partition.
Splitting equivalence classes: refinement.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.38/46

The Initial Partition

Where do we start our partition-refinement algorithm? In other words,
which states are guaranteed not to be M

∼ related?

Claim If q1 ∈ A and q2 6∈ A then q1

M

6∼ q2.

Why? Because ε ∈ L(Mq1) and ε 6∈ L(Mq2)!

So the partition refinement algorithm starts off with an initial partition
containing two equivalence classes: A and Q − A.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.39/46

Example

1

1

2

3

4

5

6

7

0

0

0

1

1
0

1

0

0

1

1

1

0

Initial partition: {6}, {1, 2, 3, 4, 5, 7}

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.40/46

Refining Partitions

Suppose q1, q2 are such that δ(q1, a)
M

6∼ δ(q2, a) for some a ∈ Σ.

aa

6∼M

q1 q2

Then q1

L

6∼ q2! (Why?)

This means that if we have an equivalence class (or block) B such that

q1, q2 are in B, but

there is an a such that δ(q1, a) and δ(q2, a) are in different blocks,

then B should be split into two new classes: one containing q1, and
one containing q2!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.41/46

Splitting Blocks

More precisely, suppose we have:

aa

q1 q2

B

...

B′

a

That is, q1, q2 ∈ B and het δ(q1, a) ∈ B′ but δ(q2, a) 6∈ B′. Then B

should be split into:

B1 = { q ∈ B | δ(q, a) ∈ B′ }

B2 = { q ∈ B | δ(q, a) 6∈ B′ }

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.42/46

Example

Initial partition: {6}, {1, 2, 3, 4, 5, 7}
In B = {1, 2, 3, 4, 5, 7}:

3, 5, 7 have 0 transitions to
B′ = {6}.

1, 2, 4 do not.

So B should be split into:

B1 = {3, 5, 7}, and

B2 = {1, 2, 4}.

New partition: {6}, {3, 5, 7}, {1, 2, 4}.

1

1

2

3

4

5

6

7

0

0

0

1

1
0

1

0

0

1

1

1

0

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.43/46

The Algorithm for Computing Equivalence
Classes of M

∼

Start with partition {A, Q − A}.

While there is a block B that should be split, generate a new
partition by replacing B with B1 and B2.

Halt when no more splitting is possible.

It turns out that when the algorithm terminates, the blocks are exactly
the equivalence classes of M

∼!

These can then be used to generated the minimized version ML of M .

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.44/46

Example

1

1

2

3

4

5

6

7

0

0

0

1

1
0

1

0

0

1

1

1

0

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.45/46

Summary: Regular Languages...

are defined using regular expressions

are processed mechanically via DFAs/NFAs

are closed with respect to ◦, ∗, ∪, complement, ∩, ...

have a characterization in terms of equivalence classes of
“indistinguishability”

have minimum-state DFA acceptors

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 4 – p.46/46

	Minimal Deterministic Automata
	Decision Procedures for FAs
	Decision Procedures for FAs
	Deciding Whether $lang (M) = emptyset $
	Deciding Whether $lang (M_1) sub lang (M_2)$
	Deciding Whether $lang (M_1) sub lang (M_2)$ (cont.)
	Minimizing Automata
	How Many States Do You Need in a DFA?
	Questions about States in DFAs
	Indistinguishability
	Examples of Indistinguishability
	Relating $indisting {L}$ and DFAs for L
	Formally...
	$indisting {L}$ and Minimum-state Automata
	A Fact About $indisting {L}$
	$indisting {L}$ and Equivalence Classes
	Building M_L
	Formalizing the Construction of M_L
	Example of M_L
	Hmmm...
	Why is the Theorem True?
	Reviewing $indisting {L}$
	Reviewing $indisting {L}$ (cont.)
	A Minimum-State DFA for L
	Languages That Are Not Regular
	Minimizing DFAs
	Minimizing DFAs
	Unnecessary States in DFAs
	Other Unneccessary States: Preliminaries
	Language Equivalence and States
	Example for $dfaeq {M}$
	Relating $dfaeq {M}$ and $indisting {lang (M)}$
	Relating $dfaeq {M}$ and $indisting {lang (M)}$ (cont.)
	Facts about $dfaeq {M}$
	Constructing Minimum-State DFAs
	Merging Language-Equivalent States
	Computing Equivalence Classes of $dfaeq {M}$
	The Initial Partition
	Example
	Refining Partitions
	Splitting Blocks
	Example
	The Algorithm for Computing Equivalence Classes of $dfaeq {M}$
	Example
	Summary: Regular Languages...

