
Compiler organizations

Optimizer

Generation
Code

Semantics

Parser

Program

Front
End

Middle
End

Back
End

Executable
Text

Front end: Operator and storage ab-
stractions, alias mechanisms.

Middle end:

Dead code elimination

Code motion

Reduction in strength

Constant propagation

Common subexpression elimina-
tion

Fission

Fusion

Strip mining

Jamming

Splitting

Collapsing

Back end: Finite resource issues and
code generation.

Copyright c 1994 Ron K. Cytron. All rights reserved – 121– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Some thoughts

Misconceptions

Optimization optimizes your program.
There’s probably a better algorithm or sequence of

program transformations. While optimization hopefully

improves your program, the result is usually not optimal.

Optimization requires (much) more
compilation time. For example, dead code

elimination can reduce the size of program text such

that overall compile time is also reduced.

A clever programmer is a good sub-
stitute for an optimizing compiler.
While efficient coding of an algorithm is essential, pro-

grams should not be obfuscated by “tricks” that are

architecture- (and sometimes compiler-) specific.

All too often

Optimization is disabled by default. De-

bugging optimized code can be treacherous [45, 23].

Optimization is often the primary suspect of program

misbehavior—sometimes deservedly so. “No, not the

third switch!”

Optimization is slow. Transformations are often

applied to too much of a program. Optimizations are

often textbook recipes, applied without proper thought.

Optimization produces incorrect code.
Although recent work is encouraging [42], optimizations

are usually developed ad hoc.

Programmers are trained by their com-
pilers. A style is inevitably developed that is con-

ducive to optimization.

Optimization is like sex:

Everybody claims to get good results using exotic techniques;

Nobody is willing to provide the details.

Copyright c 1994 Ron K. Cytron. All rights reserved – 122– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Multilingual systems

IBM
RS/6000

SUN
SPARC

C FTN ADA

CRAY. . .

. . .

CRAYIBM
RS/6000

SUN
SPARC

C FTN ADA

IL

. . .

. . .

Architecting an intermediate language reduces the incremental cost of accom-
modating new source languages or target architectures [5]. Moreover, many
optimizations can be performed directly on the intermediate language text, so that
source- and machine-independent optimizations can be performed by a common
middle-end.

Copyright c 1994 Ron K. Cytron. All rights reserved – 123– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Intermediate languages

It’s very easy to devote much time and effort toward choosing the “right” IL. Below
are some guidelines for choosing or developing a useful intermediate language:

The IL should be a bona fide language, and not just an aggregation of data
structures.

The semantics of the IL should be cleanly defined and readily apparent.

The IL’s representation should not be overly verbose:

– Although some expansion is inevitable, the IL-to-source token ratio should be
as low as possible.

– It’s desirable for the IL to have a verbose, human-readable form.

The IL should be easily and cleanly extensible.

The IL should be sufficiently general to represent the important aspects of multiple
front-end languages.

The IL should be sufficiently general to support efficient code generation for
multiple back-end targets.

A sampling of difficult issues:

How should a string operation be
represented (intact or as a “loop”)?

How much detail of a procedure’s
behavior is relevant?

Ideally, an IL has fractal characteristics:
optimization can proceed at a given
level; the IL can be “lowered”; opti-
mization is then applied to the freshly
exposed description.

Copyright c 1994 Ron K. Cytron. All rights reserved – 124– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

What happens in the middle end?

Essentially, the program is transformed
into an observably equivalent while less
resource-consumptive program. Such
transformation is often based on:

Assertions provided by the program
author or benefactor.

The program dependence
graph [29, 15, 6].

Static single assignment (SSA)
form [8, 3, 44, 9].

Static information gathered by solv-
ing data flow problems [25, 34, 35,
36, 22, 37, 38, 27].

Run-time information collected by
profiling [40].

Control Flow Graph

Depth-First
Numbering

Spanning Tree

Dominators

Dominance
Frontiers

Intervals

Profiling

Program
Semantics

Sparse Evaluation
Graph

Data Flow
Problems

Graph
Program Dependence

Edges
Dependence

Control

Program

Transformation

Form
Assignment
Static Single

Data Dependence
Edges

Let’s take a look at an example that benefits greatly from optimization

Copyright c 1994 Ron K. Cytron. All rights reserved – 125– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Unoptimized matrix multiply
for 1 to do

for 1 to do

0

for 1 to do

od
od

od

Note that is really

1 1 1 2

which takes 6 integer operations.

The innermost loop of this “textbook” program takes

24 integer ops
3 loads
1 floating add
1 floating mpy
1 store

30 instructions
Copyright c 1994 Ron K. Cytron. All rights reserved – 126– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Optimizing matrix multiply
for 1 to do

for 1 to do

&

for 1 to do

od
od

od

for 1 to do

& 1

for 1 to do

&

for 1 to do

od
od

od

The expression is loop-invariant
with respect to the loop. Thus, code
motion can move the address arith-
metic for out of the innermost loop.

The resulting innermost loop contains
only 12 integer operations.

As loop iterates, addressing arithmetic
for changes from to 1 .
Induction variable analysis detects the
constant difference between these ex-
pressions.

The resulting innermost loop contains
only 7 integer operations.

Similar analysis for yields only 2 integer operations in the innermost loop, for a
speedup of nearly 5. We can do better, especially for large arrays.
Copyright c 1994 Ron K. Cytron. All rights reserved – 127– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

If optimization is

so great because:

A good compiler can sell (even a slow)
machine. Optimizing compilers easily provide a

factor of two in performance. Moreover, the analysis

performed during program optimization can be incor-

porated into the “programmingenvironment” [29, 7, 43].

New languages and architectures mo-
tivate new programoptimizations. Al-

though someoptimizations are almost universally benefi-

cial, the advent of functional and parallel programming

languages has increased the intensity of research into

program analysis and transformation.

Programs can be written with attention
to clarity, rather than performance.
There is no substitute for a good algorithm. However, the

expression of an algorithm should be as independent as

possible of any specific architecture.

then:

Why does it take so long? Compilation

time is usually 2–5 times slower, and programs with large

procedures often take longer. Often this is the result of

poor engineering: better data structures or algorithms

can help in the optimizer.

Why does the resulting program some-
times exhibit unexpected behavior?
Sometimes the source program is at fault, and a bug

is uncovered when the optimized code is executed;

sometimes the optimizing compiler is itself to blame.

Why is “no-opt” the default? Most com-

pilations occur during the software development cy-

cle. Unfortunately, most debuggers cannot provide

useful information when the program has been opti-

mized [45, 23]. Even more unfortunately, optimizing

compilers sometimes produce incorrect code. Often,

insufficient time is spent testing the optimizer, and with

no-opt the default, bugs in the optimizer may remain

hidden.

Copyright c 1994 Ron K. Cytron. All rights reserved – 128– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Ingredients in a data flow framework

Data flow graph

which is based on a directed flow
graph , typically the
control flow graph of a procedure.
A data flow problem is

forward if the solution at a nodemay
depend only on the program’s
past behavior;

backward if the solution at a node
maydependonly on a program’s
future behavior;

bidirectional if both past and future
behavior is relevant [12, 13, 14].

Start

Stop

A

B

C D

E F

G

H

J

K

L

M

We’ll assume the data flow graph is augmented with a and node, and
an edge from to .

We’ll limit our discussion to non-bidirectional problems, and assume that edges
in the data flow graph are oriented in the direction of the data flow problem.

Copyright c 1994 Ron K. Cytron. All rights reserved – 129– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Ingredients in a data flow framework (cont’d)

Meet lattice which determines the out-
come when disparate solutions
combine. The lattice is specified
with distinguished elements

which represents the best possible
solution, and

which represents the worst possi-
ble solution.

Transfer Functions which transform one
solution into another.

Soln3

Soln2Soln1

OUT = f (IN)

Soln IN

Soln OUT

We’ll use the meet lattice to summarize the effects of convergent paths in the data
flow graph, and transfer functions to model the effects of a data flow graph path on
the data flow solution.

We’ll begin with some simple bit-vectoring data flow problems, classically solved as
operations on bit-vectors. For ease of exposition, we’ll associate data flow solutions
with the edges, rather than the nodes, of the data flow graph.

Copyright c 1994 Ron K. Cytron. All rights reserved – 130– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Available expressions

Anexpression isavailable () at
flow graph edge if any past behavior
of the program includes a computation
of the value of at .

Consider the expression in the
flow graph shown to the right. If the ex-
pression is available at the assignment
to , then it need not be recomputed.

This is a forward problem, so the data
flowgraphwill have the same edges
and and nodes as the flow
graph.

The solution for any given is
either or .

The “best” solution for an expression
is . We thus obtain the two-level
lattice:

is .

is .

Start

Stop

v = 9

x = v+w

v = 2

y = v+w

w = 5

z = v+w

Copyright c 1994 Ron K. Cytron. All rights reserved – 131– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Available expressions(cont’d)

Nodes that compute an expression
make that expression available. We
also assume that every expression is
available from .

The transfer function for each high-
lighted node makes the expression

, regardless of the solution
present at the node’s input.

Stop

v = 9

v = 2

Avail

Avail

Avail

Avail

Avail

w = 5

z = v+w

x = v+w

y = v+w

Start

Copyright c 1994 Ron K. Cytron. All rights reserved – 132– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Available expressions(cont’d)

Nodes that assign to any variable in
an expression make that expression not
available, even if the variable’s value is
unchanged.

The transfer function for each high-
lighted node makes the expression

, regardless of the solution
present at the node’s input.

Start

Stop

v = 9

x = v+w

v = 2

y = v+w
Not Avail Not Avail

Not Avail

w = 5

z = v+w

Not AvailNot Avail

Copyright c 1994 Ron K. Cytron. All rights reserved – 133– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Available expressions (cont’d)

Herewe see the global solution for avail-
ability of the expression .

Each of the highlighted nodes shown
previously asserts a solution on its output
edge(s). It’s the job of global data
flow analysis to assign the best possible
solution to every edge in the data flow
graph, consistent with the asserted solu-
tions.

The expression need not be
computed in the assignment to . The
relevant value is held either in , or ,
depending on program flow.

To solve this problem using bit-vectors,
assign each expression a position in the
bit-vector. When an expression is avail-
able, its associated bit is 1.

Start

Stop

v = 8

v = 9

x = v+w

v = 2

Avail

Avail

Avail

y = v+w

Avail

Avail

Avail

Avail

Avail

Not Avail Not Avail

Not Avail

Not Avail

Not Avail
Avail

Not Avail

Not Avail

Avail

w = 5

z = v+w

Copyright c 1994 Ron K. Cytron. All rights reserved – 134– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Live variables

A variable is live at edge if the future
behavior of the programmay reference
the value of at .

If a variable is not live, then any
resources associated with (registers,
storage, etc.) may be reclaimed.

This is a backward problem.

In the bit-vector representation,
each variable is associated with a
bit.

The “best” solution is , so we
obtain the two-level lattice:

is .

is .

A

B

C D

v = 1 v = 2

x = v

v = 3Stop

Start

E F

G

H

K

L

M

J
call f(v)

Copyright c 1994 Ron K. Cytron. All rights reserved – 135– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Live variables (cont’d)

Each of the highlighted nodes affects
the data flow solution:

If a node uses , then the node’s
asserts that is .

If a node kills , then the node’s
output asserts that is .

Start

Stop

v = 1 v = 2

call f(v)

Not Live

Not Live

Not Live Not Live

Live
Live

Not Live

v = 3

x = v

Copyright c 1994 Ron K. Cytron. All rights reserved – 136– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Live variables (cont’d)

If a node preserves (as might a
procedure call), then the node does not
affect the solution.

If is on “input” to , then
cannot make .

If is on “input” to , then
does not make .

Node ’s transfer function is therefore
the identity function:

assuming node does not use .

Global solution: Live variables

Start

Stop

Not Live

Not Live

Not Live Not Live

Live
Live

Not Live

Live

Live

Live

LiveLive Live

Not Live Live

Live
Live

Live

Live

call f(v)

A

B

C D

v = 1 v = 2

x = v

v = 3

E F

G

H

J

K

L

M

Copyright c 1994 Ron K. Cytron. All rights reserved – 137– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Formal specification of a data flow framework

The data flow graph

has been described previously:

its edges are oriented in the direc-
tion of the data flow problem;

is augmented with nodes
and and an edge ,
suitably inserted with respect to the
direction of the data flow problem.

Successors and predecessors are also
defined with respect to the direction of
the data flow problem:

The meet semilattice is

is a set (usually a powerset), whose
elements form the domain of the
data flow problem,

and are distinguished elements of
, usually called “top” and “bot-

tom”, respectively,

is a reflexive partial order, and

is the associative and commutative
meet operator, such that for any

,

These rules allow formal reasoning
about and in a framework.

Copyright c 1994 Ron K. Cytron. All rights reserved – 138– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Formal specification (cont’d)

The set F of transfer functions

:

has elements for describing the behav-
ior of any flow graph node with respect
to the data flow problem.

To obtain a stable solution, we’ll require
the functions in to be monotone:

In other words, a node cannot produce
a “better” solution when given “worse”
input. Given a two-level lattice, evalua-
tion of the data flow graph shown to the
right oscillates between solutions and
never reaches a fixed point.

Start

Y

Stop

if
if

Copyright c 1994 Ron K. Cytron. All rights reserved – 139– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Big picture

SSA form De-SSA

Program Control Flow Analysis

Sparse Evaluation Graph Evaluation

Constant Propagation

Value Numbering

Code Motion

New Paper

LowerDF1 DF2 ...

We’ll now examine some special algorithms for optimization, based on a single
assignment representation.

Copyright c 1994 Ron K. Cytron. All rights reserved – 140– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Static Single Assignment (SSA) form

Below are shown a program and its reaching definitions.

Start

Stop

2

1

3

call f(v)4

= v

= v

G

H

v =

v =

v =

4call f(v)

Start

Stop

1

2

{ }

{ }

{ }

{v1}

{v1}

{v1}

{v2}

{v1.v2}

{v3}

{v3}

{v3}

{v3, v4}
{v3, v4} {v3, v4}

{v3, v4}

{v3, v4} {v3, v4}

{v1. v2. v3. v4}

{v3. v4}

= v

= v

G

H

3

v =

v =

v =

Notice how the use of vat G is reached by two definitions, and the use at H is reached
by four definitions. If each use were reached by just a single definition, data flow
analysis based on definitions could consult one definition per use.
Copyright c 1994 Ron K. Cytron. All rights reserved – 141– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

SSA form (cont’d)

Here we see the SSA form of the pro-
gram.

Each definition of is with respect to
a distinct symbol: 1 is as different
from 2 as would be from .

Where multiple definitions reach a
node, a -function is inserted, with
arguments sufficient to receive a dif-
ferent “name” for on each in-edge.

Each use is appropriately renamed
to the distinct definition that reaches
it.

Although -functions could have
been placed at every node, the
program shown has exactly the
right number and placement of -
functions to combine multiple defs
from the original program.

Our example assumes that proce-
dure does not modify .

/v = O(v ,v)

/v = O(v ,v)
H

= v
5 4 6

5

/v = O(v ,v)

Start

Stop

2

1v = 1

3v = 3

call f(v)

G
4 1 2= v4

6 0

3

3

v = 1

Copyright c 1994 Ron K. Cytron. All rights reserved – 142– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

SSA form (cont’d)

Eachdef is now regardedas a “killing” def, even those usually regardedas preserving
defs. For example, if is potentially modified by the call site, then the old value for
must be passed into the called procedure, so that its value can be assigned to the

name for that always emerges from the procedure.

Procedure

if () then

7

else

/ Do nothing /
fi

end

Procedure

0

if () then

1 7

else

/ Do nothing /
fi

2 0 1

2

end

SSA form can be computed by a data flow framework, in which the transfer function
for a node with multiple reaching defs of generates its own def of . Uses are then
named by the solution in effect at the associated node.

Copyright c 1994 Ron K. Cytron. All rights reserved – 143– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

SSA form construction [9]

1. Every preserving def is turned into a killing def, by copying potentially unmodified
values (at subscripted defs, call sites, aliased defs, etc.).

2. Each ordinary definition of defines a new name.

3. At each node in the flow graph where multiple definitions of meet, a -function
is introduced to represent yet another new name for .

4. Uses are renamed by their dominating definition (where uses at a -function are
regarded as belonging to the appropriate predecessor node of the -function).

Copyright c 1994 Ron K. Cytron. All rights reserved – 144– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Why is SSA good?

Data flow algorithms built on def-use chains gain asymptotic efficiency as shown
below:

v = v = v =

= v = v = v

Quadratic def-use chains

v = v = v =

= v = v = v

v = O(v,v,v)/

Linear def-use chains

With each use reached by a unique def, program transformations such as code
motion are simplified: motion of a use depends primarily on motion of its unique
reaching def. Intuitively, the program has been transformed to represent directly
the flow of values. We’ll now look at some optimizations that are simplified by SSA
form.

Copyright c 1994 Ron K. Cytron. All rights reserved – 145– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

SSA constant propagator [44]
Original Program

6

1

1

repeat

if 6 then

0

else

1

fi

1

until ()

SSA form

1 6

1 1

1 1

repeat

2 1 5

2 1 3

2 1 4

if 2 6 then

3 0

else

3 2 1

fi

4 2 3

4 3 2

5 4 4

3 2 1

until (5 3)

Each name is initialized to the lattice value . Propagation proceeds only along
edges marked executable. Such marking takes place when the associated condi-
tion reaches a non- value. The value propagates along unexecutable edges.
Copyright c 1994 Ron K. Cytron. All rights reserved – 146– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

SSA constant propagator (cont’d)

SSA Form

1 6

1 1

1 1

repeat

2 1 5

2 1 3

2 1 4

if 2 6 then

3 0

else

3 2 1

fi

4 2 3

4 3 2

5 4 4

3 2 1

until (5 3)

Pass 1

1 6

1 1

1 1

repeat

2 1 5 6 6

2 1 3 1 1

2 1 4 1 1

if 2 6 then

3 0

else

/ Not executed /

fi

4 2 3 6 6

4 3 2 0 0

5 4 4 6 0 6

3 2 1 1 1 2

until 5 3 6 2 false

Copyright c 1994 Ron K. Cytron. All rights reserved – 147– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

SSA constant propagator (cont’d)

Pass 1

1 6

1 1

1 1

repeat

2 1 5 6 6

2 1 3 1 1

2 1 4 1 1

if 2 6 then

3 0

else

/ Not executed /

fi

4 2 3 6 6

4 3 2 0 0

5 4 4 6 0 6

3 2 1 1 1 2

until 5 3 6 2 false

Pass 2

1 6

1 1

1 1

repeat

2 1 5 6 6 6

2 1 3 1 2

2 1 4 1

if 2 6 then

3 0

else

/ Not executed /

fi

4 2 3 6 6

4 3 2 0 0

5 4 4 6 0 6

3 2 1 1

until 5 3 6

Our solution has stabilized. Even though 2 is , that value is never transmitted along
the unexecuted edge to the for 4.
Copyright c 1994 Ron K. Cytron. All rights reserved – 148– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

SSA value numbering [3, 39]

2

2

2

1

For the above program, constant prop-
agation will fail to determine a compile-
time value for and , because the
behavior of the function must be
captured as at compile-time.

Nonetheless, we can see that and
will hold the same value, even though
we cannot determine at compile-time
exactly what that value will be. Such
knowledge helps us replace the com-
putation of 2 by a simple copy from
.

Value numbering attempts to label each
computation of theprogramwith anum-
ber, such that identical computations
are identically labeled.

Prior to SSA form, value numbering
algorithms were applied only within
basic blocks (i.e., no branching) [2].

Early value numbering algorithms
relied on textual equivalence to de-
termine value equivalence. The
text of each expression (and per-
haps subexpression) was hashed to
a value number. Intervening defs
of variables contained in an expres-
sion would kill the expression. This
approach could not detect equiva-
lence of and in the example to
the left, since 2 is not textually
equivalent to 2 .

It seems that ought to have the same value as and , but our algorithm won’t
discover this, because the “function” that computes (1) differs from the
“function” that computes and (2).
Copyright c 1994 Ron K. Cytron. All rights reserved – 149– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

SSA value numbering (cont’d)

We essentially seek a partition of
SSA names by value equivalence,
since value equivalence is reflexive,
symmetric, and transitive.

We’ll initially assume that all SSA
names have the same value.

When evidence surfaces that a
given block may contain disparate
values (names), we’ll talk about split-
ting the block. Generally, the algo-
rithm will only split a block in two.
However, the first split ismore severe,
in that names are split by the func-
tional form of the expressions that
compute their value.

v

w x

a

c

t

w

a

t

v
x

c

Above are shown the initial and final partitions for the example on the previous page.

Copyright c 1994 Ron K. Cytron. All rights reserved – 150– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

SSA value numbering (cont’d)

After construction of SSA form, we split by the function name that computes values for
the assigned variables. We thus distinguish between binary addition, multiplication,
etc.

One further point is that -functions at different nodes must also be distinguished,
even though their function form appears the same. This is necessary because a
branch taken into one -function is not necessarily the same branch taken into
another, unless the two functions reside in the same node.

Binary Plus

Unary Minus

x * y + z

cos(x)

PHI at node Y

PHI at node Z
foo(x,y)bar(x,y)

X = (X,X)φ

X = (X,X)φ

Copyright c 1994 Ron K. Cytron. All rights reserved – 151– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

SSA value numbering example
if () then

1

if () then

1

else

2

2

fi

3 1 2

3 1 2

2 3

2 3

else

4

fi

5 1 0

5 0 4

3 5

3 5

3 5

For brevity, symbols , , and
represent syntactically distinct function
classes in the program shown to the left.

In the figures that follow, we’ll see that

2 and 2 have the same value, while 3

and 3 do not. Thus, program optimiza-
tion will save a memory fetch by using
the value of 2 for 2.

Note that if is declared volatile in
the language C, then this optimization
would be incorrect, because each ref-
erence to should be realized. How
can one account for volatility in this
optimization? Perhaps by assuming that
volatile variables cannot have the same
value.

It would be difficult and expensive to
express all possible defs of a volatile
variable in SSA form.

Copyright c 1994 Ron K. Cytron. All rights reserved – 152– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

SSA value numbering example (cont’d)

Here we see the initial partition of SSA
names:

The syntactic classes , , and are
distinguished;

-functions at different nodes are
distinguished;

The initial value of each variable 0

is considered identical;

Within each syntactic class, values
are considered identical.

a0=
b0=
c0=
d0=

d2=*b3

c2=*a3

γ

β

β

b1=
a1=α

α

a2=

b2=

b4=

a3= (a1,a2)

b3= (b1,b2)

a5= (a1,a0)

b5= (b0,b4)

φ

φ

φ

φ

d3=*b5

c3=*a5
e3=*a5

Copyright c 1994 Ron K. Cytron. All rights reserved – 153– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

SSA value numbering example (cont’d)

a0=
b0=
c0=
d0=

d2=*b3

c2=*a3

γ

β

β

b1=
a1=α

α

a2=

b2=

b4=

a3= (a1,a2)

b3= (b1,b2)

a5= (a1,a0)

b5= (b0,b4)

φ

φ

φ

φ

d3=*b5

c3=*a5
e3=*a5

a0=
b0=
c0=
d0=

d2=*b3

c2=*a3

γ

β

β

b1=
a1=α

α

a2=

b2=

b4=

a3= (a1,a2)

b3= (b1,b2)

a5= (a1,a0)

b5= (b0,b4)

φ

φ

φ

φ

d3=*b5

c3=*a5
e3=*a5

On the left, the block with 5 splits the five names shown into two subblocks; on the
right, 4 splits 5 from 5.

Copyright c 1994 Ron K. Cytron. All rights reserved – 154– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

SSA value numbering example (cont’d)

a0=
b0=
c0=
d0=

d2=*b3

c2=*a3

γ

β

β

b1=
a1=α

α

a2=

b2=

b4=

a3= (a1,a2)

b3= (b1,b2)

a5= (a1,a0)

b5= (b0,b4)

φ

φ

φ

φ

d3=*b5

c3=*a5
e3=*a5

Finally, 5 splits 3 from 3. Here, note
that we could have used either 5 or 5

to do the job. Asymptotic efficiency is
gained by choosing 5, because there
are fewer uses of that name than of 5.

In summary, the algorithm is as follows:

1. Let be a worklist of blocks to be
used for further splitting.

2. Pick and remove (arbitrary) block
from .

3. For each block properly split by ,

(a) If is on , then remove and
enqueue its splits by ;

(b) Otherwise, enqueue the split with
the fewest uses.

4. Loop to step 2 until is empty.

Copyright c 1994 Ron K. Cytron. All rights reserved – 155– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Register allocation

Optimal register allocation is NP-hard.

Trivial approaches can be really bad: using the most recently freed register is
provably worst for pipelined machines.

Many approaches begin by assuming an infinite number of virtual registers
for assignment to values. These are then covered by actual registers during
allocation.

Chaitin-Chandra

Each variable (or expression) is
assigned a virtual register for the dura-
tion of a procedure. Actual registers are
allocated by coloring an interference
graph, using Chandra’s heuristic. Where
allocation fails, some expressions care
chosen for spilling: these are not kept
in registers but loaded on demand and
immediately stored afterwards.

Chow-Hennessey

The maximum number of live variables
is computed. Some register allocation
can clearly succeed if there are suffi-
cient registers to cover max-live. How-
ever, this may involve allocating the
same variable to two different registers
in different live ranges. This necessitates
swapping registers for a given variable
where control flow merges.

Knobe and Zadeck give a method that sloshes rather than spills: variables are kept
intermittently in registers.

Copyright c 1994 Ron K. Cytron. All rights reserved – 156– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

