Advanced Compilers

Lecture 3
Foundation of Data Flow Analysis
Semi-lattice (set of values, meet operator)
Transfer functions

Correctness, precision and convergence

Meaning of Data Flow Solution

Reading: Chapter 9.3

M. Lam

|. Purpose of a Framework

 Purposel
* Prove properties of entire family of problems once and for all

* Will the program converge?
* What does the solution to the set of equations mean?

 Purpose 2:

» Aid in software engineering: re-use code

Advanced Compilers 2 L 3:Foundation of Data Flow Analysis

The Data-Flow Framework

» Data-flow problems (F, V, [J)) are defined by

e A semilattice

» domain of values (V)
* meet operator ([J)
» A family of transfer functions (F: V - V)

Advanced Compilers 3 L 3:Foundation of Data Flow Analysis

Semi-lattice: Structure of the Domain of Values

A semi-lattice S = < a set of values V, a meet operator [I>

Properties of the meet operator
o idempotent: x Ox = X
e commutative: x Oy = y [Ox
e associative: xU(yldz) = (xOy) Oz

Examples of meet operators ?

Non-examples ?

Advanced Compilers 4 L 3:Foundation of Data Flow Analysis

Example of A Semi-Lattice Diagram

« (V,0):V ={x]such that x 0 {dy,dy,d3}}, 0= 0O

{} Q)

{dq} {dy} {d3}

{dy,d5} {d;,d3} {d,,d3}

{dq,dp,d3} (0)

x Uy = first common descendant of X & y
Define top element 7, such that x[[] = X

Define bottom element [J, such that x O[] = [

Semi-lattice diagram : picture of a partial order!

Advanced Compilers 5 L 3:Foundation of Data Flow Analysis

A Meet Operator Defines a Partial Order (vice versa)

Definition of partial order <: x<y ifandonly if xy = x

y
L= kOy=® = (xsy)
X

path

Properties of meet operator guarantee that <is a partial order
* Reflexive:x < x
o Antisymmetric: if x<y andy<x thenx =y
* Transitive: if x<y and y<z then x<z

(x<y) = (x<y) O(x#y)

A semi-lattice diagram:

» Set of nodes: set of values
« Setofedges{(y, X): x<y and -[s.t. (x<2z)O(z<y) }

Example:

* Meet operator: [Partial order < :

Advanced Compilers 6 L 3:Foundation of Data Flow Analysis

Summary

 Three ways to define a semi-lattice:

» Set of values + meet operator
e idempotent: xOx = X
e commutative: x dy = y[Ox
e associative: x(yldz) = (xUy) Oz
o Set of values + partial order
» Reflexive: x < x
o Antisymmetric: if x<y andy<x thenx =y
* Transitive: if x<y and y<z then x<z
» A semi-lattice diagram
* No cycles
e []is on top of everything
» [Jis at the bottom of everything

Advanced Compilers 7 L 3:Foundation of Data Flow Analysis

Another Example

 Semi-lattice
* V ={x | such that x 0 { dy, dy, dg}

e [I=n
{dy.dp,d3} @)
{dy,d5} {dy,d3} {dp,d3}
{} (1)
e <iS

Advanced Compilers 8 L 3:Foundation of Data Flow Analysis

One Element at a Time

* A semi-lattice for data flow problems can get quite large:
2" elements for n var/definition

o A useful technique:
o define semi-lattice for 1 element

» product of semi-lattices for all elements

 Example: Union of definitions
» For each element
defl def2 defl x def2

() 0 th}

{il} {iz} /\

{d} {} {}{dy}

NS

{dy} {do}
o <Xq, Xo> < <Yq, Y>> iff Xy <y and X, <y,

Advanced Compilers 9 L 3:Foundation of Data Flow Analysis

Descending Chain

» Definition

 The height of a lattice is the largest number of >
relations that will fit in a descending chain.

Xg> Xy > ...

* Height of values in reaching definitions?

* Important property: finite descending chains

Advanced Compilers 10 L 3:Foundation of Data Flow Analysis

Il. Transfer Functions

« A family of transfer functions F

 Basic Propertiesf:V - V

» Has an identity function
o [If such that f (x) = x, for all x.

» Closed under composition
o if f, 6, 0F, fef,0F

Advanced Compilers 11 L 3:Foundation of Data Flow Analysis

Monotonicity: 2 Equivalent Definitions

» A framework (F, V, [J) is monotone iff

« x<y implies f(x)<f(y)

* Equivalently,
a framework (F, V, [J) is monotone iff

« f(xOy) <f(x) Of(y) ,

* meet inputs, then apply f
<

apply f individually to inputs, then meet results

Advanced Compilers 12 L 3:Foundation of Data Flow Analysis

Example

* Reaching definitions: f(x) = Gen O (x - Kill), O= [

o Definition 1:

e Let X1S X9,
f(x,): Gen 0 (x4 - Kil)

f(x,): Gen O (x, - Kill)

o Definition 2;

e f(x;0X,) = (Gen O ((xq O x,) - Kill))

f(x1) Of(x,) = (Gen O (x¢ - Kill)) 0 (Gen O (x, - Kill))

Advanced Compilers 13 L 3:Foundation of Data Flow Analysis

Important Note

» Monotone framework does not mean that f(x) < x
» e.g. Reaching definition for two definitions in program
« suppose: f: Gen = {d} ; Kill = {d,}

Advanced Compilers 14 L 3:Foundation of Data Flow Analysis

Distributivity

« A framework (F, V, 0) is distributive if and only if
« f(xDy) = f(x) Uf(y) ,

meet input, then apply f is equal to
apply the transfer function individually then merge result

Advanced Compilers 15 L 3:Foundation of Data Flow Analysis

Ill. Properties of Iterative Algorithm

e Given:
« [Jand monotone data flow framework
» Finite descending chain
« = Converges

 [nitialization of interior pointsto T

= Maximum Fixed Point (MFP) solution of equations

Advanced Compilers 16 L 3:Foundation of Data Flow Analysis

Behavior of iterative algorithm (intuitive)

For each IN/OUT of an interior program point:
 [ts value cannot go up (new value < old value) during algorithm

« Start with T (largest value)

* Proof by induction
* Apply 1st transfer function / meet operator < old value (T)
* Inputs to “meet” change (get smaller)
* since inputs get smaller, new output < old output

 Inputs to transfer functions change (get smaller)

* monotonicity of transfer function:
since input gets smaller, new output < old output

» Algorithm iterates until equations are satisfied
* Values do not come down unless some constraints drive them down.

» Therefore, finds the largest solution that satisfies the equations

Advanced Compilers 17 L 3:Foundation of Data Flow Analysis

V. What Does the Solution Mean?

 |IDEAL data flow solution

e Letfy, .., f,: OF,f; is the transfer function for node i

f,o="F, ... of

p = T *Th Pis a path through nodes ny, ..., ny

fo = identify function, if Pis an empty path

» For each node n: [f (boundary value),
for all possibly executed paths p; reachingn

 Example

It sor(y) >=0

fal Sf/ \tiue

x:o\kA/le

 Determining all possibly executed paths is undecidable

Advanced Compilers 18 L 3:Foundation of Data Flow Analysis

Meet-Over-Paths MOP

Err in the conservative direction

Meet-Over-Paths MOP
* Assume every edge is traversed
* For each node n:

MOP(n) = O f,, (boundary value), for all paths p. reachingn
P |
|

Compare MOP with IDEAL
 MOP includes more paths than IDEAL
« MOP = IDEAL [JResult(Unexecuted-Paths)
« MOP < IDEAL
« MOP is a “smaller” solution, more conservative, safe

Data Flow Solution < MOP < IDEAL

» as close to MOP from below as possible

Advanced Compilers 19 L 3:Foundation of Data Flow Analysis

Solving Data Flow Equations

« What is the difference between MOP and MFP of data flow
equations?

 Therefore
e FP < MFP < MOP < IDEAL
 FP, MFP, MOP are safe
 If framework is distributive, FP < MFP = MOP < IDEAL

Advanced Compilers 20 L 3:Foundation of Data Flow Analysis

Summary

A data flow framework

 Semi-lattice

» set of values (top)
* meet operator
* finite descending chains?
» Transfer functions
e summarizes each basic block
* boundary conditions

« Properties of data flow framework:

* monotone framework and finite descending chains
= iterative algorithm converges

= finds maximum fixed point (MFP)
= FP < MFP < MOP < IDEAL

o distributive framework
= FP < MFP = MOP < IDEAL

Advanced Compilers 21 L 3:Foundation of Data Flow Analysis

