Lecture 4

More on Data Flow:
Constant Propagation
Control Flow: Speed, Loops

I Constant Propagation
Il Efficiency of Data Flow Analysis

i Algorithm to find loops

Reading: Chapter 9.4, 9.6
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|. Constant Propagation/Folding

< At every basic block boundary, for each variable v
» determine if v is a constant

* if so, what is the value?
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Semi-lattice Diagram

e Finite domain?
* Finite height?
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Equivalent Definition
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« Meet Operation:

vl v2 vl [Ov2
e undef undef

unde c, c,
NAC NAC
undef C1

€1 Co Cq,ifcy=cy

NAC otherwise

NAC NAC
undef NAC

NAC c, NAC
NAC NAC

* Note: undef Jc2 = c2!
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Example
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Transfer Functions

¢ Assume a basic block has only 1 instruction

Let IN[b,x], OUT[b,X]

 be the information for variable x at entry and exit of basic block b

OUT[entry, X] = undef, for all x.
* Non-assignment instructions: OUT[b,x] = IN[b,X]

< Assignment instructions: (next page)
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Constant Propagation (Cont.)

* Let an assignment be of the formx 3 =Xx; + X,
* + represents a generic operator
¢ OUT[b,x] = IN [b,x], if X # X3

IN[b,x4] IN[b,x5] OUT[b,X3]
undef

undef c,

NAC
undef

Co
NAC
undef

NAC Cy

NAC

e Use: x<y implies f(x) <f(y) to check if framework is monotone

o [vivy I1<vy' vy L f(vave D) sf(lvive )
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Distributive?

2 X
3 y

Advanced Compilers 8 L4: Constants, Control Flow



Summary of Constant Propagation

» A useful optimization
* lllustrates
 abstract execution
* an infinite semi-lattice

» a non-distributive problem
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ll. Efficiency of Iterative Data Flow

+ Assume forward data flow for this discussion

¢ Speed of convergence depends on the ordering of no  des

B I S

* How about:
.

- 0
b
. ey

exit
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Depth-first Ordering: Reverse Postorder

Preorder traversal: visit the parent before its ch ildren

« Postorder traversal: visit the children then the p arent

Preferred ordering: reverse postorder

Intuitively
» depth first postorder visits the farthest node as early as possible
* reverse postorder delays visiting farthest node
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“Reverse Post-Order” Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

/1 Boundary condition
QUT[Entry] =01

/1 Initialization for iterative algorithm
For each basic block B other than Entry
aur[B] = O

I/ iterate
VWi | e (changes to any OUT occur) {
For each basic block B other than Entry
in reverse post order {
in[B] = 0O (out[p]), for all predecessors p of B
out[B] = fg(in[B]) // out[B]=gen[B]O(in[B]-kill[B])
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Consideration in Speed of Convergence

Does it matter if we go around the same cycle multi ~ ple times?

» Cycles do not make a difference:

 reaching definitions, liveness

¢ Cycles make a difference: constant propagation

N

a=>b
b=c
c =1
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Speed of Convergence

« If cycles do not add info:

» Labeling nodes in a path by their reverse postorder rank:
1>4->5->7->2->4 ..

« info flows down nodes of increasing reverse postorder rank in 1
pass

« Loop depth = max. # of “retreating edges” in any acyclic path

« Maximum # iterations in data flow algorithm = Loop depth+2
(2 is necessary even if there are no cycles)
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¢ Knuth’s experiments show: average loop depth in real programs =
2.75
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[ll. What is a Loop?

* Goal:
» Define a loop in graph-theoretic terms (control flow graph)

» Not sensitive to input syntax,
a uniform treatment for all loops: DO, while, goto’s
 Informally: A “natural” loop has
» edges that form at least a cycle
» asingle entry point
start
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Dominators

* Node d dominates node nin a graph (d dom n)
if every path from the start node to n goes through d

* a node dominates itself
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* Immediate dominance:
didomn:ddomn,d#n,=On s.t. ddom mand mdom n

* Immediate dominance relationships form a tree
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Finding Dominators

* Definition
* Node d dominates node nin a graph (d dom n)
if every path from the start node to n goes through d

¢ Formulated as a MOP problem
» node dlies on all possible paths reaching node n = d domn
« Direction:
* Values:
¢ Meet operator:
* Top:
¢ Bottom:
¢ Boundary condition: start/exit node =
¢ Finite descending chains only?
« Transfer function:
* Speed:

< With reverse postorder, solution to most flow graphs
(reducible flow graphs) found in 1 pass
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Definition of Natural Loops

 Single entry-point: header (d)
a header dominates all nodes in the loop

e Aback edge (n - d)in a flow graph is
an edge whose destination dominates its source (d dom n)

» The natural loop of a back edge (n - d) is
d + { nodes that can reach n without going through d }.
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Graph Edges

» Depth-first spanning tree
» Edges traversed in a depth-first search of a graph form a
depth-first spanning tree
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< Categorizing edges in graph
» Advancing edges: from ancestor to proper descendant
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» Retreating edges: from descendant to ancestor
(not necessarily proper)

» Cross edges: all other edges
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Back Edges

* Definition

» Back edge: n — d, ddomn

< Relationships between graph edges and back edges

» a back edge must be a retreating edge
dominator = visit d before n, n must be a descendant of d

 aretreating edge is not necessarily a back edge

» Most programs (all structured code, and most GOTO programs)

* retreating edges = back edges
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Constructing Natural Loops

» The natural loop of aback edge (n - d) is
d + { nodes that can reach n without going through d }.

* Remove d from the flow graph, find all predecessors of n

« Example
»1
—
f/ \2
+/ v
>
\ /
fI/
L8

L4: Constants, Control Flow

Inner Loops

« If two loops do not have the same header
« they are either disjoint, or

* one is entirely contained (nested within) the other
-- inner loop, one that contains no other loop.

« If two loops share the same header

» Hard to tell which is the inner loop
» Combine as one

N
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Summary

Constant propagation

Introduced the reverse postorder iterative algorit hm

« Define loops in graph theoretic terms

Definitions and algorithms for
» Dominators
» Back edges
» Natural loops
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