
Advanced Compilers M. Lam

Lecture 5

Partial Redundancy Elimination

I Forms of redundancy
-- global common subexpression elimination
-- loop invariant code motion
-- partial redundancy

II Lazy Code Motion Algorithm

Reading: Chapter 9.5

Advanced Compilers 2 L5: Partial Redundancy Elimination

Overview

• Eliminates many forms of redundancy in one fell sw oop

• Originally formulated as 1 bi-directional analysis

• Lazy code motion algorithm

• formulated as 4 separate uni-directional passes
(backward, forward, forward, backward)

Advanced Compilers 3 L5: Partial Redundancy Elimination

I. Common Subexpression Elimination

• A common expression may have different values on d ifferent
paths!

• On every path reaching p,

• expression b+c has been computed

• b, c not overwritten after the expression

d=b+c

a=b+c

d=b+c

a=b+c

b=7 a=b+c b=7
f=b+c

d=b+c

Advanced Compilers 4 L5: Partial Redundancy Elimination

Loop Invariant Code Motion

• Given an expression (b+c) inside a loop,
does the value of b+c change inside the loop?
is the code executed at least once?

a=b+c

a=t

t=b+c

a=b+c

b=read() a=b+c

exit

Advanced Compilers 5 L5: Partial Redundancy Elimination

Partial Redundancy

• Can we place calculations of b+c
such that no path re-executes the same expression

• Partial redundancy elimination (PRE)

• subsumes:

• global common subexpression (full redundancy)
• loop invariant code motion (partial redundancy for loops)

a=b+c

d=b+c

Advanced Compilers 6 L5: Partial Redundancy Elimination

II. Increasing the Chance of Optimization

• Critical edges

• source basic block has multiple successors
• destination basic block has multiple predecessors

• Assume every statement is a basic block

• Only place statements at the beginning of a basic block
• Add a basic block for every edge

that leads to a basic block with multiple predecessors

b+c

b+c

Advanced Compilers 7 L5: Partial Redundancy Elimination

Full Redundancy

• Full redundancy at p: expression a+b redundant on all paths

• cutset: nodes that separate entry from p

• cutset contains calculation of a+b

• a, b, not redefined

a+bp:

entry

a+b

a+b a+b
cutset

a=...
b=...

Advanced Compilers 8 L5: Partial Redundancy Elimination

Partial Redundancy

• Partial redundancy at p: redundant on some but not all paths

• Add operations to create a cutset containing a+b
• Note: Moving operations up can eliminate redundancy

• Constraint on placement: no wasted operation

• a+b is “anticipated” at B if its value computed at B
will be used along ALL subsequent paths

• a, b not redefined, no branches that lead to exit with out use

• Range where a+b is anticipated --> Choice

a+bp:

entry

a+b a+b
cutset

a=...
b=...

Advanced Compilers 9 L5: Partial Redundancy Elimination

Pass 1: Anticipated Expressions

• Backward pass: Anticipated expressions
Anticipated[b].in: Set of expressions anticipated a t the entry of b

• An expression is anticipated if its value computed at point p
will be used along ALL subsequent paths

Anticipated Expressions

Domain Sets of expressions

Direction backward

Transfer function fb(x) = EUseb ∪ (x -EKillb)
EUse: used exp
EKill: exp killed

∧ ∩
Boundary in[exit] = ∅
Initialization in[b] = {all expressions}

Advanced Compilers 10 L5: Partial Redundancy Elimination

Examples (1)

x=a+b

x=a+b

z=a+b

y=a+b

a=10r=a+b

Advanced Compilers 11 L5: Partial Redundancy Elimination

Examples (2)

a+b

a+b

Advanced Compilers 12 L5: Partial Redundancy Elimination

Examples (3)

x=a+b

y=a+b

a=10

x=a+b

y=a+b

a=10

Advanced Compilers 13 L5: Partial Redundancy Elimination

Pass 2: Place As Early As Possible

• First approximation: frontier between “not anticip ated” & “anticipated”
• Complication: Anticipation may oscillate

• Assume: place expression e such that it is available where it is anticipated.

• e will be available at p
if e has been anticipated but not subsequently killed on all paths reaching p

Available Expressions

Domain Sets of expressions

Direction forward

Transfer function fb(x) = (Anticipated[b].in ∪ x) - EKillb
∧ ∩
Boundary condition out[entry] = ∅

Initialization out[b] ={all expressions}

x=a+b

y=a+b

Advanced Compilers 14 L5: Partial Redundancy Elimination

Early Placement

• earliest(b)

• set of expressions added to block b under early placement

• Place expression at the earliest point anticipated and not already
available

• earliest(b) = anticipated[b].in − available[b].in

• Algorithm

• For all basic block b, if x+y ∈ earliest[b]

• at beginning of b:
create a new variable t
t = x+y,
replace every original x+y by t

Advanced Compilers 15 L5: Partial Redundancy Elimination

Pass 3: Lazy Code Motion
• Delay without creating redundancy to reduce regist er pressure

• An expression e is postponable at a program point p if
• all paths leading to p

have seen the earliest placement of e but not a subsequent use

Postponable Expressions

Domain Sets of expressions

Direction forward

Transfer function fb(x) = (earliest[b] ∪ x) -EUseb

∧ ∩
Boundary condition out[entry] = ∅
Initialization out[b] = {all expressions}

y=b+c

x=b+c

Advanced Compilers 16 L5: Partial Redundancy Elimination

Latest: frontier at the end of “postponable” cut se t

• latest[b] = (earliest[b] ∪ postponable.in[b]) ∩

(EUseb ∪ ¬(∩s ∈ succ[b](earliest[s] ∪ postponable.in[s])))

• OK to place expression: earliest or postponable

• Need to place at b if either

• used in b, or
• not OK to place in one of its successors

• Note because of pre-processing step:

• if one of its successors cannot accept postponement,
b has only one successor

• The following does not exist

OK to place

not OK to placeOK to place

Advanced Compilers 17 L5: Partial Redundancy Elimination

Pass 4: Cleaning Up

• Eliminate temporary variable assignments unused be yond
current block

• Compute: Used.out[b]: sets of used (live) expressi ons at exit of b.

Used Expressions

Domain Sets of expressions

Direction backward

Transfer function fb(x) = (EUse[b] ∪ x) -latest[b]

∧ ∪
Boundary condition in[exit] = ∅
Initialization in[b] = ∅

x=a+b

not used afterwards

Advanced Compilers 18 L5: Partial Redundancy Elimination

Code Transformation

• For all basic blocks b,
if (x+y) ∈ (latest[b] ∩ used.out[b])

at beginning of b:
add new t = x+y

if (x+y) ∈ (EUseb ∩ ¬ (latest[b] ∩ ¬ used.out[b]))
replace every original x+y by t

Advanced Compilers 19 L5: Partial Redundancy Elimination

Summary

• Cannot execute any operations not executed origina lly

• Pass 1: Anticipation: range of code motion

• Eliminate as many redundant calculations of an exp ression as
possible, without duplicating code

• Pass 2: Availability: move it up as early as possible

• Delay computation as much as possible to minimize register
lifetimes

• Pass 3: Postponable: move it down unless it creates redundancy
(lazy code motion)

• Pass 4: Remove temporary assignment

Advanced Compilers 20 L5: Partial Redundancy Elimination

Remarks

• Powerful algorithm

• Finds many forms of redundancy in one unified framework

• Illustrates the power of data flow

• Multiple data flow problems

