SE 450 Winter 2002
Midterm Exam

March 19, 2002

Name:

Directions: Write your name in the blank at the top of this page.
You have two hours and thirty minutes (2:30) to take this exam.
It is closed book and closed notes.
Write your answers on the exam.
There are 7 questions, some with mutiple parts.
If I can not read your answer clearly, then it will be marked as incorrect.
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Question 1
Draw a single UML class diagram that describes the following situation. Make your diagram as precise
as possible.

(a) Interface I defines method f.

(b) Interface J defines method g.

(c) Class C implements I and J; C implements f; C does not implement g.
(d) Class D extends C and implements g.

(e) Each instance of class X maintains references to between zero and twenty instances of I.
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Question 2
Consider the following definitions.

interface Stack {
bool isEmpty();
void push(Object 1i);
Object pop();

}

class Queue {
public bool isEmpty() { /* ... *x/ }
public void enqueue(Object i) { /* put item at rear */ }
public Object dequeue() { /* remove & return front item */ }
// some implementation

}

class StackImpl extends Queue implements Stack {
public void push(Object i) { /* put item at front */ }
public Object pop() { return this.dequeue(); }

}

For each question, answer true or false, with a short ONE sentence justification that fits in the space
provided.

(a) Is StackImpl asubclass of Queue in Java? In other words, does Java allow you to use the code for
Queue when defining the code for StackImpl?

(b) Is StackImpl conceptually a subtype of Queue? For example, would StackImpl work well in a
supermarket?

(c) Is StackImpl a subtype of Queue in Java? In other words, does Java allow you to substitute an in-
stance of StackImpl where an instance of Queue is required (e.g. Queue q = new StackImpl();)?

(d) Is StackImpl conceptually a subtype of Stack? For example, would StackImpl work well as a
stack of plates?

(e) Is StackImpl a subtype of Stack in Java? In other words, does Java allow you to substitute an
instance of StackImpl where an instance of Stack is required?
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Question 3
Consider the following code from the homework assignments:

abstract public class AbstractUndoableCommand implements UndoableCommand {
private CommandHistory _history;

protected AbstractUndoableCommand(CommandHistory history) { _history = history; }
abstract protected boolean setup();
abstract protected void dodo();
abstract public void undo();
final public void execute() {
if (setup()) {
dodo () ;
_history.addCommand (this) ;
}
}
final public void redo() {
dodo () ;
}
}
public class CompositeCommand extends AbstractUndoableCommand {
private final List _list;

public CompositeCommand(CommandHistory history) {
super (history) ;
_list = new ArrayListQ);
}
public void addCommand(AbstractUndoableCommand cmd) { _list.add(cmd); }
public boolean setup() { return true; }
public void dodo() {
Iterator i = _list.iterator();
while (i.hasNext()) {
AbstractUndoableCommand cmd = (AbstractUndoableCommand) i.next();
cmd.dodo () ;
}
}
public void undo() {
ListIterator i = _list.listIterator(_list.size());
while (i.hasPrevious()) {
AbstractUndoableCommand cmdObject = (AbstractUndoableCommand) i.previous();
cmdObject.undo () ;

b
}
b
public class AddCommand extends AbstractUndoableCommand {
private Database _db; private int _year;
private Video _newVideo; private String _category;
private String _title; private int _numCopies;

public AddCommand(Database db, String title, int year, String category,
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int numCopies) {

super (db) ; _year = year;
_db = db; _category = category;
_title = title; _numCopies = numCopies;

}

protected boolean setup() {
return (_db.findVideo(_title) == null);

}

public void dodo() {
_newVideo = new VideoImpl(_title, _year, _category, _numCopies);
_db.addVideo (_newVideo) ;

}

public void undo() {
_db.removeVideo(_title);

}

}

Given the following main program fragment

AbstractUndoableCommand cll = new AddCommand(db, "Vanishing Point", 1973, "Drama", 1);
AbstractUndoableCommand c12 = new AddCommand(db, "American Graffiti", 1975, "Comedy" , 3);
AbstractUndoableCommand c13 = new AddCommand(db, "E1 Mariachi", 1996, "Drama", 2);
AbstractUndoableCommand c14 = new AddCommand(db, "Play it again, Sam", 1978, "Comedy", 4);
CompositeCommand cl = new CompositeCommand (db) ;

cl.addCommand(c11);

cl.addCommand(ci12);

cl.addCommand(c13);

cl.addCommand(c14);

cl.execute();

draw an object interaction diagram tracing the method executions for the call c1.execute(). Your
diagram should have columns corresponding to objects c1, c11, c12, c13, c14, with the leftmost column
being c1. Do not include any other objects.
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Question 4
Consider the following code:

interface SummingDice {
int roll(); // roll two dice; return the value of the roll
int sum(); // return the sum of all rolls

}

interface Player {
int takeTurn (SummingDice d);

3

// A generic player that rolls until he goes bust, or decides to stop...
abstract class AbstractPlayer implements Player {
public int takeTurn (SummingDice d) {
while (true) {
if (d.roll() == 2)

return (0); // player looses
if (!'rollAgain(d))
break;
}
return d.sum(); // player gets points

}
// Should we roll again?
protected abstract boolean rollAgain (SummingDice d);

}

// A player that never rolls more than once.
class CautiousPlayer extends AbstractPlayer {
protected boolean rollAgain (SummingDice d) {
return false;

}
3

// A player that rolls until he accumulates 1000 points (or goes bust trying).
class GreedyPlayer extends AbstractPlayer {
protected boolean rollAgain (SummingDice d) {
return d.sum() < 1000;
}
}

(a) What pattern does this code use?

(b) Rewrite the code to use the Strategy Pattern. (You may change all of the class names; you must
maintain only the interface.)



(intentionally blank)
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Question 5
In this problem, we will look at a data structure for representing simple organizational charts (org charts).

interface Node { int size(); }

class P implements Node { // a node consisting of a single p(erson)
private String _name;
public P(String name) { _name = name }
public int size() {/* TODO =/}

}

class 0U implements Node { // an organizational unit: a node with zero or more children
private String _name; // (any type of nodes including P and 0U)
private List _children = new LinkedList();
public 0U(String name) { _name = name; }
public Iterator getChildren() { _children.iterator(); }
public void addChild(Node node) { _children.add(node); }
public int size() {/* TODO */}

(a) Using the classes P and OU, write code that builds an org chart for the following portion of a
College (you may use the space to the right of the following tree):

e The college itself

Dean Top

Gregory (office manager)

Arts department
* Chair One
* Jamie
* KJaggu

Music department
+ Chair Mozart
x Eminem
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(b) Recall that you can iterate over the elements in a list x as follows:

Iterator i = x.iterator();

while (i.hasNext()) {
Node current = (Node) i.next();
// do something with current

}

Assuming that each person is in at most one organizational unit, complete the size () method in
the classes P and 0U. Write your answers below.

class P implements Node { // ...
public int size() {

}
¥

class 0U implements Node { // ...
public int size() {
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Question 6
Consider the interface Predicate defined as follows.

interface Predicate{
boolean evaluate(int j);

3

(a) Write a class IsEven so that the following code:

Predicate p = new IsEven();
if ( p.evaluate(2)) { System.out.println("2 is even"); }
if (! p.evaluate(3)) { System.out.println("3 is not even");

produces output

2 is even
3 is not even

class IsEven implements Predicate {
public boolean evaluate(int j) {

3

(b) Write a class Alternate so that the following code

Predicate p = new Alternate();
in = new DatalnputStream(System.in);

for (int k=0; k<6; k++){
int j = in.readInt(); // read a number from the user
if (p.evaluate(j)) {
System.out.println("true");
} else {
System.out.println("false");
}
}

produces the following output, no matter what input the user gives:

true
false
true
false
true
false



Name: 10

©)

Thus, the evaluate method in class Alternate alternates between true and false: it returns
true the first time around, false the second time, true again the third time etc.

You may add fields if necessary.

class Alternate implements Predicate {

boolean evaluate(int j){

Write a class Not implementing Predicate, so that the following code

Predicate p = new IsEven();

Predicate q = new Not(p);

if (! g.evaluate(2)) { System.out.println("2 is even"); }
if ( q.evaluate(3)) { System.out.println("3 is not even");

produces output

2 is even
3 is not even

Notice the extra negation in the guards of the conditionals in the above program relative to question
a.

As another example, the following code:

Predicate p = new Alternate();
Predicate q = new Not(p);
in = new DatalnputStream(System.in);

for (int k=0; k<6; k++){
int j = in.readInt(); // read a number from the user
if (q.evaluate(j)) {
System.out.println("true");
} else {
System.out.println("false");
}
¥
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produces the following output, no matter what input the user gives:

false
true
false
true
false
true

Notice that the outputs are just flipped, from true to false and false to true, in comparing with
question b.

Finish the code in the following class:

class Not implements Predicate {
Predicate _p;

Not (Predicate p) { _p =p; }
boolean evaluate(int j){
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Question 7
In this problem, we will look at the following “Stream” iterator.

abstract class Stream implements Iterator {

}

public final boolean hasNext() { return true; }

class IntegerStream extends Stream {
private int _i = -1;

}

public Object next() { _i++; return new Integer(_i);}

See the comments for the output of the following code:

IntegerStream I = new IntegerStream();
.println(I.next());
.println(I.next());
.println(I.next());
.println(I.next());
.println(I.next());

System.
System.
System.
System.
System.

out
out
out
out
out

// prints O
// prints 1
// prints 2
// prints 3
// prints 4

on
on
on
on
on

the
the
the
the
the

Screen
sScreen
sScreen
screen
screen

12

(a) Finish the code of class FilteredStream implementing Iterator so that the following code
fragments work as indicated:

IntegerStream I = new IntegerStream();
FilteredStream F = new FilteredStream(I, new IsEven());
System.
System.
System.
System.
System.

out.println(F.
out.println(F.
out.println(F.
out.println(F.
out.println(F.

next());
next());
next());
next());
next());

// prints
// prints
// prints
// prints
// prints

IntegerStream J = new IntegerStream();
J.next();
FilteredStream G = new FilteredStream(J, new IsEven());

System.
System.
System.
System.

out.println(G.
out.println(G.
out.println(G.
out.println(G.

next());
next());
next());
next());

// move forward one item in J

0

2
4
6
8

on
on
on
on
on

// prints 2 on
// prints 4 on
// prints 6 on
// prints 8 on

IntegerStream K = new IntegerStream();
class Div3 implements Predicate {
public boolean evaluate(int n) { return (n%3) == 0; }

}

the screen
the screen
the screen
the screen
the screen

the screen
the screen
the screen
the screen

FilteredStream H = new FilteredStream(K, new Div3());

System.
System.
System.
System.

out.println(H.
out.println(H.
out.println(H.
out.println(H.

next());
next());
next());
next());

// prints 0 on
// prints 3 on
// prints 6 on
// prints 9 on

the screen
the screen
the screen
the screen

Your job is to write the method next () in the following code.
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class FilteredStream extends Stream {
private Stream _it;
private Predicate _p;

public FilteredStream(Stream it, Predicate p) {
_it = it;
-p =p;

}

public Object next() {

(b) Consider the following classes:

class NotDivn implements Predicate {
final private int _n;
NotDivn(int n) {

-0 =n;

}

public boolean evaluate(int m) {
return (m)_n) '= 0;

}

}
class WhatAPain extends Stream {
private Stream _it;

public WhatAPain(Stream it) {
_it = it;
}

public Object next() {
final int n = ((Integer) _it.next()).intValue();
final Predicate d = new NotDivn(n);
Stream newit = new FilteredStream(_it, d);
_it = newit;
return (new Integer(n));

}

}

What does the following code print?

13
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IntegerStream I = new IntegerStream();
System.out.println(I.next());
System.out.println(I.next());

WhatAPain w = new WhatAPain(I);

System.
System.
System.
System.
System.
System.
System.
System.

out
out
out
out
out
out
out
out

.println(w.
.println(w.
.println(w.
.println(w.
.println(w.
.println(w.
.println(w.
.println(w.

next());
next());
next());
next());
next());
next());
next());
next());

// prints O on the screen
// prints 1 on the screen

14
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