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Abstract—This is the first paper to propose a pure event struc-
tures model of relaxed memory. We propose confusion-free
event structures over an alphabet with a justification relation
as a model. Executions are modeled by justified configurations,
where every read event has a justifying write event. Justifica-
tion alone is too weak a criterion, since it allows cycles of the
kind that result in so-called thin-air reads. Acyclic justification
forbids such cycles, but also invalidates event reorderings that
result from compiler optimizations and dynamic instruction
scheduling. We propose a notion well-justification, based on a
game-like model, which strikes a middle ground.

We show that well-justified configurations satisfy the DRF
theorem: in any data-race free program, all well-justified con-
figurations are sequentially consistent. We also show that rely-
guarantee reasoning is sound for well-justified configurations,
but not for justified configurations. For example, well-justified
configurations are type-safe.

Well-justification allows many, but not all reorderings
performed by relaxed memory. In particular, it fails to validate
the commutation of independent reads. We discuss variations
that may address these shortcomings.

1. Introduction

The last few decades have seen several attempts to define
a suitable semantics for shared-memory concurrency under
relaxed assumptions; see Batty et al. [2015] for a recent
summary. Event structures [Winskel 1986] provide a way
to visualize all of the conflicting executions of a program
as a single semantic object. In this paper, we exploit the
visual nature of event structures to provide a fresh approach
to relaxed memory models.

Consider a simple programming language where all
values are booleans, registers (ranged over by r) are thread-
local and variables (ranged over by x and y) are global. In
order to define the semantics compositionally, variable read
is defined as a choice among the possible values that might
be read. For example, the event structure for (r=x; y=r;)
is as follows.

init

Rx 0 Rx 1

Wy 0 Wy 1

Register values are resolved via substitution and therefore
do not appear in the event structure. The arrows represent
program order, and the zigzag represents a primitive conflict.
If two events are in conflict, then all following events are
also in conflict.

This structure has two maximal conflict-free configura-
tions, which represent a possible execution of the program:

init Rx 0 Wy 0 and init Rx 1 Wy 1 .

If we suppose that this code fragment is embedded in a
larger program, the two configurations are equally sensible:
x could be anything. However, if we take init to be the top-
level initialization of the program and suppose that variables
are initialized to 0, then the first configuration above seems
sensible, whereas the second does not: x must be 0.

A read event is justified by a matching visible write,
drawn with a dashed arrow in the above configurations.
Writes are hidden if they occur later or are blocked by
an intervening write. When modeling executions of whole
programs, one expects that all reads in a configuration must
be justified.

In a happens-before model [Manson et al. 2005], all con-
current writes are visible, making this notion of justification
quite permissive. Consider a program with two threads and
the corresponding event structure, with events numbered for
reference.

(r1=x; y=r1;) || (r2=y; x=r2;) (P1)

init
10

Rx 1
12

Rx 0
11

Wy 0
15

Wy 1
16

Ry 0
13

Ry 1
14

Wx 0
17

Wx 1
18

Here, the events that are neither ordered nor in conflict are
concurrent. The event structure for P1 has the following
configuration, in which every read event is justified by a
matching write that is either before it, or concurrent:

init
10

Rx 0
11

Wy 0
15

Ry 0
13

Wx 0
17

(C0)



Unfortunately, the event structure also has a configuration
in which there is a cycle in justification-and-program-order:

init
10

Rx 1
12

Wy 1
16

Ry 1
14

Wx 1
18

(C1)

Due to the cycle, any available value can be so justified, thus
arising “out of thin air”. Some memory models have unde-
fined semantics in the presence of such data races [Batty
et al. 2011]. In the absence of such undefined behaviour,
however, languages that claim memory safety must disallow
thin-air values in order to preserve type safety.

Unfortunately, cycles such as that in configuration C1
cannot be banned outright without also banning useful pro-
gram transformations, such as instruction reordering. For
example, consider the following program.

(r1=x; y=1;) || (r2=y; x=1;) (P2)

The event structure for P2 is the same as that for P1 except
that all writes have value 1. Thus, P2 also allows config-
uration C1. Clearly, if the order of the two instructions is
swapped in either thread of P2, then it is possible for both
threads to read 1. Since program transformations may not
introduce new behaviors, C1 must also be considered a valid
configuration of the original program.

There are several models in the literature designed to
allow configuration C1 for P2, yet deny it for P1. Roughly
these can be divided into two approaches: working with
multiple executions [Manson et al. 2005; Jagadeesan et al.
2010] or working with axioms and rewrite rules [Cenciarelli
et al. 2007; Saraswat et al. 2007; Pichon-Pharabod and
Sewell 2016].

We propose a new approach, based on two-player games.
The game is as follows: we start in configuration C , and
the player’s goal is to extend it to configuration D . The
opponent picks a configuration C ′ which includes C , and
whose new events are acyclically justified. The player then
picks a configuration C ′′ which includes C ′, and whose new
events are also acyclically justified. If C ′′ justifies D then
the player has won, otherwise the opponent has won. If the
player has a winning strategy for this game, we say that C
AE-justifies D .

From this game, we can define the well-justified config-
urations inductively: /0 is well-justified; if C is well-justified
and C AE-justifies D then D is well-justified.

Consider the following program, P3.

(r1=x; y=1;) || (r2=y; x=r2;) (P3)

init
30

Rx 1
32

Rx 0
31

Wy 1
35

Wy 1
36

Ry 0
33

Ry 1
34

Wx 0
37

Wx 1
38

We show that both reads may be resolved to 1 in the well-
justified configuration {30, 32, 34, 36, 38}. In this case the

cyclic justifier models a valid execution, caused by a com-
piler or hardware optimization reordering (r1=x; y=1;) as
(y=1; r1=x;).

We first show that /0 AE-justifies {30, 34, 38}. The oppo-
nent may choose any configuration acyclically justified from
/0; the interesting choices are the maximal configurations
{30, 31, 33, 35, 37} and {30, 31, 34, 35, 38}. Since both of
these include 35, which justifies 34, the player does not have
to add any events to justify {30, 34, 38}. Note that /0 does
not AE-justify {30, 32}, since the opponent can choose the
configuration {30, 31, 35, 33, 37}.

We now show that the configuration {30, 34, 38} AE-
justifies {30, 32, 34, 36, 38}. The opponent may choose any
configuration acyclically justified from {30, 34, 38}; since
any choice includes 38, which justifies 32, the player does
not have to add any events to justify {30, 32, 34, 36, 38}.
We have thus shown a cyclic configuration similar to C1 is
well-justified for P3.

init
30

Rx 1
32

Wy 1
36

Ry 1
34

Wx 1
38

This reasoning fails for configuration C1 of P1. In this
case, the player is unable to establish that /0 AE-justifies
{10, 14, 18}. We provide a proof in §6. Intuitively, the only
maximal configuration available to the opponent is {10, 11,
13, 15, 17}, and this fails to justify 14 since there is no write
of 1 to y .

We review the literature on confusion-free event struc-
tures in §3. In §4 we define well-justification and provide
further examples. We give the definition for a Java-like
happens-before model [Manson et al. 2005]. We discuss
synchronization actions, such as locks, in §7.

Perhaps the most important property of a relaxed mem-
ory model is DRF: that programs without data races behave
as they would with strong memory—that is, as they would
with sequentially consistent memory [Lamport 1979]. In §5,
we describe our proof of the DRF theorem, which we have
verified in Agda.

In §6, we show that invariant reasoning is possible using
our definition. We state a general theorem—also verified in
Agda—which is sufficient to establish type safety for static
allocation.

We describe some of the limitations of our definition
in §8. While the definition presented here is a step in
the right direction, it fails to validate common reorderings,
such as the reordering of reads on different variables. We
give an alternative definition that is better behaved on the
Java Memory Model causality test cases [Pugh 2004]. The
induction principle used in our proof of DRF fails for this
alternative definition.

The paper ends with a discussion of open problems.
The Agda development underlying this paper is available

at http://asaj.org/papers/lics16.tgz.
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2. Related work

Batty et al. [2015] describe the problem of thin-air
executions and provide a detailed review of the literature.
Lochbihler [2013] provides an encyclopedic survey and
history of the Java Memory Model, in particular.

Event structures have appeared in previous attempts to
formalized relaxed memory semantics. Cenciarelli et al.
[2007] define a semantics for Java using ideas from event
structures to describe the states of an operational transition
relation. Pichon-Pharabod and Sewell [2016] define a se-
mantics for C/C++ relaxed atomics using event structures as
states used to define rewrite rules. In contrast, we define the
semantics of programs using event structures alone, without
requiring a additional layer of rewrite rules. Castellan [2016]
presents an interleaving semantics for memory using event
structures. In contrast, our semantics uses the standard non-
interleaving interpretation of parallel composition.

The use of universal quantification over configurations in
the definition of AE-justification is novel in this work. Other
definitions of valid execution for weak memory, such as the
JMM [Manson et al. 2005; Ševčík 2008; Lochbihler 2013],
are purely existential in their quantification over possible
executions.

3. Event Structures

Event structures were introduced by Winskel [1989] as
a non-interleaving model of concurrency. They are notable
for providing a compact model of concurrent systems, for
example an event structure model for n concurrent processes
will often have only O(n) events, compared to the O(2n)
states in a labelled transition system.

In this section, we review the definitions associated with
conflict-free labelled event structures, and their visualization
as graphs. Readers familiar with event structures can skip
to §4, where the new material begins.

A partial order (E,≤) is a set E (the event set) equipped
with a reflexive, transitive, antisymmetric relation ≤ (the
causal order). A well order is a partial order that has no
infinite decreasing sequence.

We visualize partial orders as directed
acyclic graphs where edges denote order.
For example the order on {0,1,2,3} where
0≤ 1≤ 2 and 0≤ 3 is visualized on the right.

A prime event structure (E,≤,#) is a
well order together with a symmetric relation # on E (the
conflict relation), such that if c # d ≤ e then c # e.

For any prime event structure, define the primitive con-
flict relation #µ on E as d #µ e whenever d # e, and for
any d ≥ b # c ≤ e we have d = b and c = e. Primitive
conflict is also known as minimal conflict. A prime event
structure is confusion-free [Nielsen et al. 1979] whenever
#µ is transitive, and if c≤ d #µ e then c≤ e.

For any confusion-free event structure, define the prim-
itive conflict equivalence d ∼ e whenever d = e or d #µ e.
It is routine to show that primitive conflict equivalence is

symmetric and transitive, and hence forms an equivalence
on E.

We visualize confusion-free event struc-
tures by including the primitive conflict
equivalence in the visualization. For example
the event structure which extends the previ-
ous partial order with 1 # 3 and 2 # 3 has
1∼ 3, so is visualized as on the right.

A labelled event structure (E,≤,#,λ ) over a label set Σ

is a prime event structure together with a function λ : E→Σ.
We visualize labelled event structures as node-labelled

graphs. For example the labelled event structure which ex-
tends the previous event structure with labelling λ (0) = init,
λ (1) = (Rx 0), λ (2) = (Wy 1) and λ (3) = (Rx 1) is visu-
alized as follows.

init

Rx 0

Wy 1

Rx 1

For any prime event structure, a set C ⊆E is conflict-free
whenever there is no d,e ∈ C such that d # e. C is down-
closed whenever d ≤ e ∈C implies d ∈C . A configuration
is a set which is conflict-free and down-closed.

Since configurations are conflict-free, they can be visu-
alized as node-labelled directed acyclic graphs, for example
the two largest configurations for the previous labelled event
structure are

init Rx 0 Wy 1 and init Rx 1 .

Given labelled event structures ES1 and ES2 (without
loss of generality, we assume event sets ES1 and ES2 are
disjoint) define the product event structure ES1 × ES2 as
having:
• event set E is E1∪E2,
• causal order ≤ is ≤1∪≤2,
• conflict # is #1∪#2, and
• labelling λ is λ1∪λ2.

The sum event structure ES1 +ES2 is the same except:
• conflict # is #1∪#2∪ (E1×E2)∪ (E2×E1).

We write 0 for the empty event structure with event set /0.
For a label σ ∈ Σ, the prefix σ •ES0 introduces a new

σ -labeled event ordered before all the events of ES0. It is
defined as having:
• event set E is E0∪{⊥},
• causal order ≤ is ≤0∪ ({⊥}×E),
• conflict # is #0, and
• labelling λ is λ0∪{(⊥,σ)}.

Using an appropriate alphabet (discussed in more detail
in §4), we can give the semantics of a simple shared-memory
concurrent language. The construction uses sum, product,
prefix and the empty event structure.

Let r range over registers. A store maps registers to
values. Let ρ range over stores and ρ0 be the initial store,
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which maps all registers to 0. We write ρ[r 7→ v] for store
update:

ρ[r 7→ v](r′) =

{
v if r = r′

ρ(r′) otherwise

Let M range over expressions, which may include registers,
but not variables. Let V be a set of values. Let M J·K be an
interpretation that maps expressions and stores to values.

We give the semantics of a single-threaded program,
featuring reads, writes and conditionals as an event structure:

T Jr=x; T Kρ
M
= ∑v∈V (Rx v)•T JT K(ρ[r 7→ v])

T Jx =M; T Kρ
M
= (Wx M JMKρ)•T JT Kρ

T JdoneKρ
M
= 0

T Jif M T1 else T0Kρ
M
=

{
T JT0Kρ if M JMKρ = 0
T JT1Kρ otherwise

A program is an collection of threads T1‖· · ·‖Tn, interpreted
as product of event structures with an initial event:

PJT1 ‖ · · · ‖TnK
M
= init• (T JT1Kρ0×·· ·×T JTnKρ0)

We use standard abbreviations. For example, the program

if (x==0) {y=1;}

desugars to the following.

r=x; if (r==0) {y=1; done} else {done}

If we take V = {0, 1}, then this has semantics

init• (((Rx 0)• (Wy 1)•0)+((Rx 1)•0))

visualized as follows.

init

Rx 0

Wy 1

Rx 1

Note that in this semantics, conflict is only introduced
by reads. Each conflicting event represents the read of a
distinct value; since only one value can be read, the events
are in primitive conflict.

4. Memory Event Structures

A memory alphabet (Σ,R,W,J,K) consists of
• a set Σ (the actions),
• set R⊆ Σ (the read actions)
• set W ⊆ Σ (the write actions),
• binary relation J ⊆ (W ×R) (justification), and
• binary relation K ⊆ J (synchronized justification).

When (a,b) ∈ J, we say that a justifies b. Synchronization
does not play a role in this section; we return to it in §7.

A memory event structure over such a memory alphabet
is a confusion-free labelled event structure over Σ.

The prototypical memory alphabet consists of an initial
action, and read and write actions over some set of variables
X , and some set of values V :

Σ = R∪W
R = {(Rx v) | x ∈ X ,v ∈V}

W = {(Wx v) | x ∈ X ,v ∈V}∪{init}

In §3 we saw that such an alphabet can be used to give the
semantics for a simple shared-memory concurrent language.
The justification relation for this alphabet is that init justifies
a read of 0, and that a write of v justifies a read of v to the
same variable:

J = {(init,(Rx 0)) | x ∈ X}
∪{((Wx v),(Rx v)) | x ∈ X ,v ∈V}

In a memory event structure, an event e is a read event
whenever λ (e) ∈ R, and a write event whenever λ (e) ∈W .
The sets R and W need not be disjoint; thus, a memory
alphabet may include read-modify-write actions such as
exchange, compare-and-set or increment. The semantics of
these operators as event structures is straightforward, fol-
lowing the style given in §3.

In a memory event structure, we can lift justification
from labels to events, but this is not just a matter of looking
at the labelling, since events should not be justified by later
events, by events in conflict, or by events with an intervening
event in read-write conflict. For example, in the program

if (y) { x=0; } else { x=1; x=x; }

with event structure semantics

init

Ry 0 Ry 1

Wx 0Wx 1

Rx 0 Rx 1

Wx 0 Wx 1

the only justified read of x is 1, not 0, and the only justified
read of y is 0, not 1. We visualize justification as a dashed
edge.

In a memory event structure, we say write event d
justifies read event e whenever:

(1) (λ (d),λ (e)) ∈ J,
(2) we do not have e < d,
(3) we do not have d # e, and
(4) there is no d < b < e∼ c such that λ (b) justifies λ (c).

The following statement is equivalent to item (4): “there is
no d < b< e∼ c such that b justifies c.” However, we cannot
use this as the definition without worrying about circularity.
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Visually these conditions are that d cannot justify e
when:

d

e
or

d e
or

d

b

c e

Definition 4.1 (Justified). A configuration C is justified
whenever every read event in C is justified by an event
in C . 2

For example, the program y=x; has two maximal con-
figurations, but only one of them is justified:

init

Rx 0

Wy 0

and

init

Rx 1

Wy 1

Unfortunately, justified configurations, although neces-
sary, are not a sufficient condition for modeling valid exe-
cutions, as they allow cycles in the union of causal order
and justification, which cause thin air reads. For example,
the program P1 from the introduction includes the justified
configurations {10, 11, 13, 15, 17} and {10, 12, 14, 16, 18} :

init
10

Rx 0
11

Wy 0
15

Ry 0
13

Wx 0
17

init
10

Rx 1
12

Wy 1
16

Ry 1
14

Wx 1
18

In the latter, there is a cycle in causal+justification order. It
is straightforward to ban such cycles.

Definition 4.2 (Acyclically justified). On configurations, de-
fine C justifies D whenever for any read event d ∈D there
exists a write event c ∈ C such that c justifies d.

Write C .D whenever C ⊆D and C justifies D .
Write .∗ for the reflexive, transitive closure of ..
Define C is acyclically justified whenever /0.∗ C . 2

Any acyclically justified configuration is also justified.
In addition, any justified configuration with acyclic causal+
justification order is acyclically justified.

For example, for P1, we have that /0 . {10}, since 10
is not a read. In addition, we have {10} . {10, 11} and
{10} . {10, 13} since 10 justifies both 11 and 13. Taking
a maximal configuration at each step, we have:

/0. {10}. {10, 11, 13, 15, 17}

However, there is no such chain leading from /0 to {10, 12,
14, 16, 18}.

Consider the following program.

(y=x; || x=1 || r=y;) (P4)

init
40

Rx 1
42

Rx 0
41

Wy 0
45

Wy 1
46

Ry 0
43

Ry 1
44

Wx 1
47

In this case the write to x is immediately available, since it
is not causally dependent on any read. Thus:

/0. {40, 47}. {40, 47, 41, 45}. {40, 47, 41, 45, 43}
/0. {40, 47}. {40, 47, 42, 46}. {40, 47, 42, 46, 44}

Here the read of x is a coin-toss, which determines whether
it is possible to read (Ry 1): A configuration that contains
41 cannot also contain 44.

The second of these sequences can be seen in Figure 1,
read from top to bottom. The events included in each
successive configuration are highlighted using a darker, blue
background. Events that are in conflict with an included
event are covered in white. Thus in a maximal configuration,
such as the last configuration in Figure 1, all events are either
highlighted or covered.

Acyclic justification rules out cycles, since in any acycli-
cally justified C , there must be configurations /0 = C0 .
· · · . Cn = C , and for any read event e ∈ C there must
be a j such that e ∈ C j+1 and a d ∈ C j which justifies e.
Since configurations are ≤-closed, this means that there is
no infinite sequence d1 ≤ e1,d2 ≤ e2, . . . , where di justifies
ei+1, and in particular there are no cycles.

Unfortunately, acyclic justification is too strong a re-
quirement, as it rules out some valid executions in the
presence of optimizations which reorder memory accesses.
For example, the program P3 = (r=x; y=1; || x=y;) has
event structure given the introduction. In this case the cyclic
justifier models a valid execution, caused by a compiler or
hardware optimization reordering (r=x; y=1;) as (y=1;
r=x;). If we are going to admit such reorderings, we cannot
model valid executions by a property of configurations, and
must look at the entire event structure (this observation was
made, in a different model, by Batty et al. [2015]).

Definition 4.3 (Well-justified). On configurations, define C
always eventually justifies (AE-justifies) D whenever for any
C .∗ C ′ there exists a C ′ .∗ C ′′ such that C ′′ justifies D .

Write C vD whenever C ⊆D and C AE-justifies D .
Write v∗ for the reflexive, transitive closure of v.
Define C is well-justified whenever C is justified and

/0v∗ C . 2

A well-justified configuration must be both justified and
AE-justified. The notion of AE-justification describes when
a read event is justified by some write event no matter which
execution path is chosen. AE-justification has the flavor
of a two-player game: in a configuration Ci, the opponent
chooses a Ci.C ′i , after which the player chooses a C ′i .C ′′i
which justifies Ci+1. If the player can justify Ci+1 regardless
of the opponent move, then the player wins the round. The
player well-justifies C if they can repeat this game to move
from the initial configuration /0 to the final configuration C .

Any acyclically justified configuration is AE-justified.
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init
40

Rx 1
42

Rx 0
41

Wy 0
45

Wy 1
46

Ry 0
43

Ry 1
44

Wx 1
47

init
40

Rx 1
42

Rx 0
41

Wy 0
45

Wy 1
46

Ry 0
43

Ry 1
44

Wx 1
47

init
40

Rx 1
42

Rx 0
41

Wy 0
45

Wy 1
46

Ry 0
43

Ry 1
44

Wx 1
47

Figure 1: Acyclic- and AE-justification for P4

Example 4.4. Consider the proof of acyclic justification
given in Figure 1. Starting from C0 = /0, the player follows
the proof of acyclic justification to select C1 = {40, 47},
then C2 = {40, 47, 42, 46} and finally C3 = {40, 47, 42,
46, 44}. In each case, the events in Ci are justified by an
extension C ′′i−1 of Ci−1, regardless of the opponent’s choice
of C ′i−1.

For any opponent move /0.∗ C ′0, the player must choose
C ′0.

∗ C ′′0 so that C ′′0 justifies C1. In this case, the player can
always choose C ′′0 ⊇{40, 47}, since 40 and 47 conflict with
no event and do not require justification. The first two moves
of the player can be collapsed, choosing C1 to be {40, 47,
42, 46}, since 42 can be justified regardless of the opponent
move. However, the last two moves cannot be collapsed. The
player cannot initially select 44; in this case the opponent
would win by choosing C ′0 = {40, 41, 43, 45}. 2

Example 4.5. We now consider the proof that P3 is well-
justified to read all ones, given in Figure 2. The previous
strategy does not work, since the goal configuration is not
acyclically justified.

The player chooses C1 = {30}, C2 = {30, 34, 38} and
finally C3 = {30, 34, 38, 32, 36}. As in the previous exam-
ple, the first two player moves can be collapsed, but not the
last two. We show the first two player moves separately to
make the opponent choices clear. The opponent can choose
C ′1 to include any events except 32 (and therefore 36);
there is no acyclically justified configuration that includes
32. For this reason events 32 and 36 are gray in the top
configuration of Figure 2. The opponent option to include
33 ∈ C ′1 prevents the player from selecting 32 ∈ C1. The
(Rx 1) cannot be justified in this case. However, (Ry 1) can
be justified regardless of the opponent’s choice. Thus 34 can
be included in C1 (or C2, as shown).

Once the player has won the round including 34, the
opponent is no longer at liberty to include 33—the choice

init
30

Rx 1
32

Rx 0
31

Wy 1
35

Wy 1
36

Ry 0
33

Ry 1
34

Wx 0
37

Wx 1
38

init
30

Rx 1
32

Rx 0
31

Wy 1
35

Wy 1
36

Ry 0
33

Ry 1
34

Wx 0
37

Wx 1
38

init
30

Rx 1
32

Rx 0
31

Wy 1
35

Wy 1
36

Ry 0
33

Ry 1
34

Wx 0
37

Wx 1
38

Figure 2: AE-order for P3

has been made. Thus the player may include 32 in the next
round. 2

Example 4.6. As noted in the introduction, configuration C1
of P1 fails to be well-justified. We provide a proof in §6.
Intuitively, the player is unable to select 14 ∈ C1, because
the opponent can choose 11 ∈ C ′0. 2

In the process of revising the Java Memory Model, Pugh
[2004] developed a set of twenty causality test cases. Using
hand calculation, we tested our semantics against nineteen
of these cases. (TC9 is based on the idea that an execution
should be allowed if there exists an augmentation, such as
thread inlining, that allows it. This is a non-goal for our
semantics; therefore, we do not consider TC9.)

Our semantics agrees with sixteen of the test cases and
disagrees with three: TC3, TC7 and TC11. In §8, we discuss
TC7, which best elucidates the issues.

Also by hand calculation, we found that our semantics
gives the desired results for all examples in Batty et al.
[2015, §4] and all but one in Ševčík [2008, §5.3]: redundant-
write-after-read-elimination—this counterexample applies to
any sensible non-coherent semantics.

5. Data-race-free event structures

We say that ES′ is an augmentation of ES if it has
same events, conflict and labels, and possibly more order.
Formally, (E,≤′,#,λ ) is an augmentation of (E,≤,#,λ ) if
≤⊆≤′.

It is straightforward to show that justification, acyclic
justification and well-justification are all reflected by aug-
mentation. For example, if ES′ augments ES and C is a
well-justified configuration of ES′ then C is a well-justified
configuration of ES.
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A sequential memory event structure is one where, for
any events d and e, either d ≤ e, e≤ d or d # e. A sequen-
tially consistent configuration of a memory event structure
is a justified configuration of a sequential augmentation of
it. That is, a configuration C of ES is sequentially consistent
if there exists an augmentation ES′ of ES such that ES′ is
sequential and C is a justified configuration of ES′.

Note that in a sequential memory event structure, if d
justifies e then d ≤ e. It follows that any justified configura-
tion of a sequential memory event structure is well-justified,
and hence that any sequentially consistent configuration of
a memory event structure is well-justified.

The converse is not true. There are well-justified con-
figurations that are not sequentially consistent, due to data
races. For example, the program (w=1; || y=(w<=x); ||
z=(x<=w); || x=1;) has semantics with configuration:

init

Rw1 Rx 1

Rx 0 Rw0

Ww1 Wx 1

Wy 0 Wz 0

This is acyclically justified, and hence well-justified, but not
sequentially consistent. In this section, we shall show that
such data races are the only source of configurations which
are well-justified but not sequentially consistent.

d

c e

d e

b c

In a memory event structure, define
concurrent events d and e to be a read-
write race whenever there is some c∼ e
such that d justifies c, as shown on the
right.

Define concurrent events d and e to
be a write-write race whenever there is
some b ∼ c such that d justifies b and e
justifies c, as shown on the right.

Define a configuration to be data-race-free when it
contains no read-write or write-write races.

We state the theorem generally for any memory event
structure that is read-enabled and commutative. The proto-
typical example, given in §4, satisfies both these criteria.

c

d e

A memory event structure is read-
enabled whenever, for any read event e
there exists some c ≤ e ∼ d such that c
justifies d, as shown on the right. Any
event structure that is the semantics of a program is read
enabled. For example, if e is (Rx 1), then it suffices to take
c to be init, since init justifies (Rx 0), which is in primitive
conflict with (Rx 1).

A memory event structure is commutative whenever c∼
d and d justifies e implies there exists b∼ e where c justifies
b, that is:

c d

e
implies

c d

eb

If read and write actions are disjoint, then it follows immedi-
ately that the resulting event structure will be commutative.

Read-modify-write operators such as swap and fetch-and-
add are commutative. Compare-and-set (CAS) is commuta-
tive if we interpret a failed CAS as both read and write (of
the old value), but not if we consider a failed CAS only as
a read. Under this interpretation, for example, CAS(x ,0,1)
generates the following event structure for bit register x .

init

RMWx 01 Rx 1

The (RMWx 01) event may justify some other read of x ;
however, the minimal conflicting event (Rx 1) is a plain
read. We leave weakening commutativity as future work.

Theorem 5.1 (DRF). In any commutative read-enabled
memory event structure, if all sequentially consistent con-
figurations are data-race-free, then all well-justified config-
urations are sequentially consistent.

PROOF. Define a configuration C to be pre-justified if every
read action e ∈ C is justified by a write action d ∈ C
where d ≤ e. It is routine to show that any pre-justified
configuration is sequentially consistent. The core lemma of
the proof follows [Lochbihler 2013], which is that if C is
pre-justified, and C justifies D , then D is pre-justified. After
this, the proof is routine: we first show that if C is pre-
justified and C .∗ D then D is pre-justified; then that if
C is pre-justified and C v∗ D then D is pre-justified. The
result follows, since /0 is trivially pre-justified. This proof
has been mechanized in Agda. 2

6. Invariants

While there is no formal definition of “thin-air read”
[Batty et al. 2015], the examples point to a failure of induc-
tive reasoning, typically due to a cycle in the union of the
causal and data dependency orders. In order to establish that
these forms of thin-air read are impossible, it is sufficient to
show that is possible to reason inductively. In this section,
we show that well-justification enables inductive reasoning.

We consider a limited form of invariant reasoning, which
is strong enough to capture non-temporal safety properties,
such as type safety. Given a suitable notion of formula, φ ,
we show that if, in every configuration of ES, the read events
satisfy φ , then, in every configuration of ES, all events
satisfy φ . Significantly, the result can be applied without
reasoning about well-justification.

To keep the setting as simple as possible, we consider
logics over labels rather than events. In order to establish
the result, we must restrict attention to logics that are
subset closed. This allows the expression of certain safety
properties such as x 6=1, but not liveness properties such as
x=1. For a label set Σ, a program logic (Φ,�) consists of:
• a set Φ (the formulae), and
• a binary relation � between P(Σ) and Φ (satisfaction).

A formula φ is subset closed whenever A⊆ B � φ implies
A � φ . It is satisfiable whenever A � φ for some A. It

7



respects justification whenever A justifies B and A � φ

implies B � φ .
For any configuration C , let Σ(C ) be the labels of C :

Σ(C ) = {λ (e) | e ∈ C}

A formula φ is an invariant of a memory event structure
whenever Σ(C )∩R � φ implies Σ(C ) � φ for any configu-
ration C (recalling that R is the set of all read actions).

A formula φ is a tautology of a memory event structure
whenever Σ(C ) � φ for any well-justified configuration C .

Theorem 6.1. For any satisfiable, subset-closed φ which
respects justification, if φ is an invariant of ES then φ is
a tautology of ES. 2

PROOF. Mechanized in Agda. 2

In the remainder of this section, we consider an example
logic. Let T be a set of type names, ranged over by τ . The
set Φ of formulae is generated by the following BNF.

φ , ψ ::= x 6=v | x :τ | true | false | φ ∧ψ | φ ∨ψ

Given a semantics Vτ ⊆ V for each type τ , let � be the
obvious satisfaction relation generated by the following rules
for the atoms.
• A � x 6=v when for any a ∈ A, if a = (Rx w) or a =
(Wx w), then w 6= v.

• A� x :τ when for any a∈A, if a=(Rx v) or a=(Wx v),
then v ∈Vτ .

Note that the logic is satisfiable and subset closed and thus
satisfies the criteria of Theorem 6.1.

Suppose that we attempt to show that φ1 = (x 6=1∧y 6=1)
is a tautology for P1 = (y=x; || x=y;). Recall the event
structure for this program, given in the introduction.

init
10

Rx 1
12

Rx 0
11

Wy 0
15

Wy 1
16

Ry 0
13

Ry 1
14

Wx 0
17

Wx 1
18

Note that any configuration which includes write events 16
or 18, must also include read events 12 or 14. Thus, if the
read events satisfy φ1 then the write events satisfy φ1, and
so φ1 is invariant for P1. Thus, by Theorem 6.1, φ1 is a
tautology for P1.

For P3=(r=x; y=1; || x=y;), instead, φ1 fails. Re-
call the event structure for this program, also given in the
introduction.

init
30

Rx 1
32

Rx 0
31

Wy 1
35

Wy 1
36

Ry 0
33

Ry 1
34

Wx 0
37

Wx 1
38

The configuration {30, 31, 35} fails to satisfy φ1 even
though its only read event 31 satisfies φ1.

These examples can be adapted to show reasoning using
types. Let 0 be the unique value of type Unit. Then P1
satisfies the typing x :Unit∧y :Unit, but P2 does not.

7. Fencing

In §4, we noted that a memory alphabet includes syn-
chronized justification, such as lock release and acquire;
however, we have not made any use of synchronization up
to now. In this section, we develop a notion of fencing, in
which synchronized justifications contribute to causal order.

We model lock-based synchronization, in a very simple
setting. We assume that there is only one, statically allocated
lock and that lock release always occurs in the same thread
as the previous acquire. The latter assumption ensures that
each release causally follows the corresponding acquire.

The memory alphabet from §4 is modified to include
acquire and release actions, which are considered both read
and write actions. (We comment on this design in §9.)

Σ = R∪W
R = {(Rx v),Aq,Rl | x ∈ X ,v ∈V}

W = {(Wx v),Aq,Rl | x ∈ X ,v ∈V}∪{init}

The semantics of locking actions are as follows.

T Jacq;T Kρ
M
= Aq•T JT Kρ

T Jrel;T Kρ
M
= Rl•T JT Kρ

The justification relation, J, now includes lock actions:

J = {(init,(Rx 0)),((Wx v),(Rx v)) | x ∈ X ,v ∈V}
∪{(init,Aq),(Aq,Rl),(Rl,Aq)}

The synchronized justification relation, K, is restricted to
lock actions.

K = {(init,Aq),(Aq,Rl),(Rl,Aq)}

Recall from §4 that event d justifies event e whenever
(1) (λ (d),λ (e)) ∈ J, (2) d does not follow e, (3) d is not in
conflict with e, and (4) there is no intervening b between d
and e that justifies an event in primitive conflict with e.

We say event d synchronously justifies event e whenever
d justifies e and (λ (d),λ (e)) ∈ K.

A fenced memory event structure is one where, for any
events d and e, if d synchronously justifies e then d ≤ e.

A well-fenced configuration of a memory event structure
is a well-justified configuration of a fenced augmentation of
it. That is, a configuration C of ES is well-fenced if there
exists a augmentation ES′ of ES such that ES′ is fenced and
C is a justified configuration of ES′.

To show that a configuration is well-fenced, the player
must first choose a fencing. Then the inductive argument for
well-justification proceeds as before.

For example, consider the following program, P5.

(acq; x=1; x=0; rel;)
|| (acq; r=x; rel;) (P5)
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init
50

Aq
51

Wx 1
53

Wx 0
56

Rl
57

Aq
52

Rx 0
54

Rx 1
55

Rl
58

Rl
59

Whereas the second thread can read 1 in a well-justified
configuration, this is not possible in a well-fenced con-
figuration. There are two possible fencings. One includes
the augmentation 57 ≤ 52, and the other includes 58 ≤ 51
and 59 ≤ 51. In either case, 54 can be justified, but 55
cannot. Therefore, there is no well-fenced configuration that
includes 55.

Note that any sequential memory event structure is
fenced. It follows that any sequential augmentation of a
memory event structure is a fenced augmentation of it, and
hence that any sequentially consistent configuration is a
well-fenced configuration.

Now, if every justification is synchronized (that is J =K)
we have that every well-fenced configuration is sequentially
consistent, but in general this is not true. In particular, if
there is no synchronization (that is K = /0) then every well-
justified configuration is well-fenced.

Fortunately, the proof of the DRF Theorem for well-
fenced configurations follows directly from the DRF theo-
rem for well-justified configurations: we just use DRF on
each fencing.

Theorem 7.1 (DRF). In any commutative read-enabled
memory event structure, if all sequentially consistent con-
figurations are data-race-free, then all well-fenced configu-
rations are sequentially consistent.

PROOF. Follows directly from Theorem 5.1. 2

8. Limitations

As noted at the end of §4, our semantics agrees with
sixteen test cases from [Pugh 2004] and disagrees with
three: TC3, TC7 and TC11. We now discuss TC7, which
best elucidates the issues.

(r=z; y=x;) || (z=y; x=1;) (TC7)

init
a

Rz 1
c

Rz 0
b

Rx 1
g

Rx 0
f

Wy 0
l

Wy 1
m

Rx 1
i

Rx 0
h

Wy 0
n

Wy 1
o

Ry 0
d

Ry 1
e

Wz 0
j

Wz 1
k

Wx 1
p

Wx 1
q

The question is whether all of the reads can be resolved to
1. This fails under our semantics: there is no well-justified
configuration that includes events c, e and i, all of which
read 1. In order to well-justify such a configuration, one

must first resolve the conflict on x , then y and finally z .
But this strategy fails immediately after resolving x .

Starting from the empty configuration, all acyclically
justified configurations can be extended to include either
p or q, and thus the player can select a configuration that
includes either g or i. Suppose the player selects i. Since
configurations are downclosed, the player must also select
c; however c is not acyclically justified when the opponent
selects p. Symmetrically, b is not acyclically justified when
the opponent selects q. Thus the player cannot resolve the
conflict on y .

The failure of TC7 indicates a failure to validate the
reordering of independent reads. To see this, consider the
program in which the first thread is rewritten.

(y=x; r=z;) || (z=y; x=1;)

init
a′

Rx 1
c′

Rx 0
b′

Wy 1
h ′

Wy 0
f ′

Rz 1
m′

Rz 0
l′

Rz 1
o′

Rz 0
n′

Ry 0
d′

Ry 1
e′

Wz 0
j′

Wz 1
k′

Wx 1
p′

Wx 1
q′

In this case, the player can choose c′, then e′, then o′, as
required.

We now sketch a proposal to address this issue. On sets
of events, define C is compatible with D whenever there is
no c∈C and d ∈D such that c #µ d. Define C is consistent
whenever C is compatible with C .

Proposal. Modify Definition 4.2 and Definition 4.3 to range
over consistent sets, rather than configurations.

A configuration C is alt-well-justified whenever C is
justified and there exists a consistent set D such that /0 v∗
D ⊇ C . 2

By this proposal, the definition of alt-AE-justifies is as
follows: On consistent sets, C alt-AE-justifies D whenever
for any C .∗ C ′ there exists a C ′ .∗ C ′′ such that C ′′

justifies D .
The configuration of TC7 that always reads 1 is alt-well-

justified. Starting from the empty set, C1 = {a,g , i} is alt-
AE-justified, since every consistent set that extends /0 (via
.∗) can be further extended to include either p or q, both
labeled (Wx 1). Although g and i are in conflict, they are
not in primitive conflict, and therefore may both be included
in a consistent set—this is the key difference between well-
and alt-well-justification. From C1, C2 = {a,g , i,e} is alt-
AE-justified, since we can always extend to include either
m or o, both labeled (Wy 1). From C2, C3 = {a,g , i,e,c} is
alt-AE-justified, since we can always extend to include k,
labeled (Wz 1). Thus /0 v∗ C3 and therefore, since writes
do not require justification, /0 v∗ {a,g ,m, i,o,e,k,q,c} ⊇
{a, i,o,e,k,q,c}, as required.

By hand calculation, alt-well-justification agrees with
all nineteen test cases; therefore, the definition looks quite
promising. The question of whether DRF holds for alt-
well-justification remains open. The inductive structure of
the proof of DRF relies on the fact that configurations are
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down closed. Since consistent sets are not necessarily down
closed, the proof strategy fails.

9. Open problems

This paper has introduced the first model for relaxed
memory based event structures. This fresh approach creates
many opportunities for future work.

Our model does not enforce coherence: that writes on
a single variable appear to occur in some global order. For
example, in a coherent semantics for (x=1;) || (x=2;)
|| (r1=x; r2=x; r3=x;) it is not possible to have r1 =
r3 6= r2, whereas our semantics allows this. To enforce
coherence, it appears to be necessary to distinguish the
causal order from the order used to determine visibility.

We have modeled synchronization using a restricted
form of locks. A coherent semantics is required to model
Java’s volatile variables, and would also allow a more satis-
factory treatment of locks. In the formalization of §7, release
and acquire are both read/write actions. This guarantees that,
for example, a single release does not enable two paral-
lel acquires. In the standard treatment of locks, assuming
coherence, release is a write, and acquire is a read; thus,
release justifies acquire, but acquire does not justify release.
The order between acquire and release is usually guaranteed
by thread order, which we have assumed. This assumption
guarantees that the order we have required from acquire to
release is redundant. With a coherent semantics for locks,
the causal order from acquire to release can be dropped.

Separate from the concerns of §8, variations on the
definition of well-justification may be worth exploring. For
example, we define of v∗ in terms of .∗: when exploring
extensions of the current configuration, both player and
opponent are restricted to using acyclic justification. It is
natural to ask about a further definition, which uses v∗ in
place of .∗. If we let v∗0 = .∗ and v∗1 = v∗, we can see
this as hierarchy where each v∗i uses v∗i−1. It is not the case
that v∗i contains v∗i−1, since the definition uses v∗i−1 in both
positive and negative position: positive for the player, and
negative for the opponent. The redundant-read-elimination
counterexample of [Ševčík 2008, §5.3.2] and TC18 of [Pugh
2004] are both interesting in this regard. If the opponent is
allowed to pick out of thin air, then the player is unable
to well-justify the desired configuration. Well-justification
becomes possible, however, if the opponent is restricted to
acyclically chosen configurations.

We have investigated a very simple program logic, which
establishes a restricted form of safety. It would be interesting
to investigate more powerful logics, such as that of Turon
et al. [2014]. One of the primary purposes of a memory
model is to support program transformation. To this end, it
would be useful to have a refinement relation over memory
event structures that preserves well-justification.

Our approach to type safety is novel, in that we have not
required a static association between variables and types as
in prior work [Lochbihler 2013; Goto et al. 2012]. It would
be interesting to extend our approach to model dynamic
allocation and deallocation.
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